Solve optimal transport problems. Compute Wasserstein distances (a.k.a. Kantorovitch, Fortet--Mourier, Mallows, Earth Mover's, or minimal \(L_p\) distances), return the corresponding transport plans, and display them graphically. Objects that can be compared include grey-scale images, (weighted) point patterns, and mass vectors.
Dominic Schuhmacher schuhmacher@math.uni-goettingen.de
Björn Bähre bjobae@gmail.com (code for aha
-method)
Nicolas Bonneel nicolas.bonneel@liris.cnrs.fr
(adaptation of LEMON code for fast networkflow
method)
Carsten Gottschlich gottschlich@math.uni-goettingen.de
(original java code for shortlist
and revsimplex
methods)
Valentin Hartmann valentin.hartmann@epfl.ch (code for aha
method for p=1
)
Florian Heinemann florian.heinemann@uni-goettingen.de
(integration of networkflow
method)
Bernhard Schmitzer schmitzer@uni-muenster.de (shielding
method)
Jörn Schrieber joern.schrieber-1@mathematik.uni-goettingen.de (subsampling
method)
Maintainer: Dominic Schuhmacher dominic.schuhmacher@mathematik.uni-goettingen.de
Package: | transport |
Type: | Package |
Version: | 0.12-1 |
Date: | 2019-08-07 |
License: | GPL (>=2) |
LazyData: | yes |
The main end-user function is transport
. It computes optimal transport plans between images (class pgrid
), point patterns (class pp
), weighted point patterns (class wpp
) and mass vectors, based on various algorithms. These transport plans can be plot
ed. The function wasserstein
allows for the numerical computation of \(p\)-th order Wasserstein distances.
Most functions in this package are designed for data in two and higher dimensions. A quick tool for computing the \(p\)-th order Wasserstein distance between univariate samples is wasserstein1d
.
See help page for the function transport
.
## See examples for function transport
Run the code above in your browser using DataLab