Learn R Programming

triggerstrategy (version 1.2.0)

sErrRphInt2: Type I error rate of the overall null hypothesis using the partial hierarchical design

Description

This function computes the type I error rate of the overall null hypothesis using the partial hierarchical group sequential design.

Usage

sErrRphInt2(cvec0, cvec1, t0, t1, tc0 = t0, tc1 = t1, rho = 0)

Value

a number shows the type I error rate of testing H0 intersect H1

Arguments

cvec0

a vector of critical boundaries for testing H0

cvec1

a vector of critical boundaries for testing H1

t0

a vector of information times for H0

t1

a vector of information times for H1

tc0

a vector of calendar times for H0

tc1

a vector of calendar times for H1

rho

a value of the correlation between the test statistics for H0 and H1.

Author

Jiangtao Gou

References

Gou, J. (2023). Trigger strategy in repeated tests on multiple hypotheses. Statistics in Biopharmaceutical Research, 15(1), 133-140. Gou, J. (2022). Sample size optimization and initial allocation of the significance levels in group sequential trials with multiple endpoints. Biometrical Journal, 64(2), 301-311. Tamhane, A. C., Gou, J., Jennison, C., Mehta, C. R., and Curto, T. (2018). A gatekeeping procedure to test a primary and a secondary endpoint in a group sequential design with multiple interim looks. Biometrics, 74(1), 40-48. Tamhane, A. C., & Gou, J. (2022). Chapter 2 - Multiple test procedures based on p-values. In X. Cui, T. Dickhaus, Y. Ding, & J. C. Hsu (Eds.), Handbook of multiple comparisons (Vol. 45, pp. 11–34).

Examples

Run this code
alpha0 <- 0.03
alpha1 <- 0.02
iuse0 <- 4
iuse1 <- 4
phi0 <- -4
phi1 <- 1
tc0 <- c(3,6,9,12)
tc1 <- c(6,12,18,24)
t0 <- c(0.3,0.6,0.9,1)
t1 <- (1:4)/4
rho <- 0
cvecList0 <- gbounds(t=t0,iuse=iuse0,
    alpha=alpha0,phi=phi0)
cvec0 <- cvecList0$bd
cvecList1 <- gbounds(t=t1,iuse=iuse1,
    alpha=alpha1,phi=phi1)
cvec1 <- cvecList1$bd
result <- sErrRphInt2(cvec0, cvec1,
    t0, t1, tc0, tc1, rho)
print(result)

Run the code above in your browser using DataLab