# Example 1: pooled logistic regression switching model
sim1 <- tsegestsim(
n = 500, allocation1 = 2, allocation2 = 1, pbprog = 0.5,
trtlghr = -0.5, bprogsl = 0.3, shape1 = 1.8,
scale1 = 0.000025, shape2 = 1.7, scale2 = 0.000015,
pmix = 0.5, admin = 5000, pcatnotrtbprog = 0.5,
pcattrtbprog = 0.25, pcatnotrt = 0.2, pcattrt = 0.1,
catmult = 0.5, tdxo = 1, ppoor = 0.1, pgood = 0.04,
ppoormet = 0.4, pgoodmet = 0.2, xomult = 1.4188308,
milestone = 546, swtrt_control_only = TRUE,
outputRawDataset = 1, seed = 2000)
fit1 <- ipcw(
sim1$paneldata, id = "id", tstart = "tstart",
tstop = "tstop", event = "died", treat = "trtrand",
swtrt = "xo", swtrt_time = "xotime",
swtrt_time_lower = "timePFSobs",
swtrt_time_upper = "xotime_upper", base_cov = "bprog",
numerator = "bprog", denominator = "bprog*catlag",
logistic_switching_model = TRUE, ns_df = 3,
relative_time = TRUE, swtrt_control_only = TRUE,
boot = FALSE)
c(fit1$hr, fit1$hr_CI)
# Example 2: time-dependent covariates Cox switching model
fit2 <- ipcw(
shilong, id = "id", tstart = "tstart", tstop = "tstop",
event = "event", treat = "bras.f", swtrt = "co",
swtrt_time = "dco",
base_cov = c("agerand", "sex.f", "tt_Lnum", "rmh_alea.c",
"pathway.f"),
numerator = c("agerand", "sex.f", "tt_Lnum", "rmh_alea.c",
"pathway.f"),
denominator = c("agerand", "sex.f", "tt_Lnum", "rmh_alea.c",
"pathway.f", "ps", "ttc", "tran"),
swtrt_control_only = FALSE, boot = FALSE)
c(fit2$hr, fit2$hr_CI)
Run the code above in your browser using DataLab