Density function, distribution function, quantile function, random generation.
dtsal.tail(x, shape=1,scale=1, q=tsal.q.from.shape(shape),
kappa=tsal.kappa.from.ss(shape,scale), xmin=0,
log=FALSE)ptsal.tail(x, shape=1, scale=1, q=tsal.q.from.shape(shape),
kappa=tsal.kappa.from.ss(shape,scale), xmin=0,
lower.tail=TRUE, log.p=FALSE)
qtsal.tail(p, shape=1, scale=1, q=tsal.q.from.shape(shape),
kappa=tsal.kappa.from.ss(shape,scale), xmin=0,
lower.tail=TRUE, log.p=FALSE)
rtsal.tail(n, shape=1, scale=1, q=tsal.q.from.shape(shape),
kappa=tsal.kappa.from.ss(shape,scale), xmin=0)
dtsal.tail
gives the density,
ptsal.tail
gives the distribution function,
qtsal.tail
gives the quantile function, and
rtsal.tail
generates random deviates.
The length of the result is determined by n
for
rtsal.tail
, and is the maximum of the lengths of the
numerical parameters for the other functions.
vector of quantiles.
vector of quantiles or a shape parameter.
vector of probabilities.
number of observations. If length(n) > 1
, the length
is taken to be the number required.
shape parameter.
scale parameters.
minimum x-value.
logical; if TRUE, probabilities p are given as log(p).
logical; if TRUE (default), probabilities are \(P[X \le x]\), otherwise, \(P[X > x]\).
Cosma Shalizi (original R code), Christophe Dutang (R packaging)
The Tsallis distribution with a censoring parameter is the distribution of a Tsallis distributed random variable conditionnaly on \(x>xmin\). The density is defined as $$ f(x) = \frac{C}{ \kappa}(1-(1-q)x/\kappa)^{1/(1-q)} $$ for all \(x>xmin\) where \(C\) is the appropriate constant so that the integral of the density equals 1. That is \(C\) is the survival probability of the classic Tsallis distribution at \(x=xmin\). It is convenient to introduce a re-parameterization \(shape = -1/(1-q)\), \(scale = shape*\kappa\) which makes the relationship to the Pareto clearer, and eases estimation. If we have both shape/scale and q/kappa parameters, the latter over-ride.
Maximum Likelihood Estimation for q-Exponential (Tsallis) Distributions, http://bactra.org/research/tsallis-MLE/ and https://arxiv.org/abs/math/0701854.
#####
# (1) density function
x <- seq(0, 5, length=24)
cbind(x, dtsal(x, 1/2, 1/4))
#####
# (2) distribution function
cbind(x, ptsal(x, 1/2, 1/4))
Run the code above in your browser using DataLab