Learn R Programming

tuneR (version 0.4-2)

dolpc: (Perceptive) Linear Prediction

Description

Compute autoregressive model from spectral magnitude samples via Levinson-Durbin recursion.

Usage

dolpc(x, modelorder = 8)

Arguments

x
Matrix of spectral magnitude samples (each sample/time frame in one column).
modelorder
Lag of the AR model.

Value

  • Returns a matrix of the normalized AR coefficients (depending on the input spectrum: LPC or PLP coefficients). Every column represents one time frame.

concept

  • lpc
  • plp
  • levinson
  • durbin
  • recursion

References

Daniel P. W. Ellis: http://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/

See Also

levinson

Examples

Run this code
testsound <- normalize(sine(400) + sine(1000) + square(250), "16")
  pspectrum <- powspec(testsound@left, testsound@samp.rate)
  aspectrum <- audspec(pspectrum, testsound@samp.rate)$aspectrum
  lpcas <- dolpc(aspectrum, 10)

Run the code above in your browser using DataLab