Listed below are supporting functions for the major methods in tvReg.
Create a list of control pararameters for the tvSURE
and
tvPLM
methods.
All control parameters that are not passed to this function are set to
default values.
.tvLM.ci(x, yboot).tvSURE.ci(x, yboot)
.kernel(x, bw, tkernel = "Triweight")
.univariatePlot(x, vars = NULL, ylim = NULL, ...)
.tvCov.cv(
bw,
x,
cv.block = 0,
est = c("lc", "ll"),
tkernel = c("Triweight", "Epa", "Gaussian")
)
.tvFE.cv(
bw,
x,
y,
z = NULL,
neq,
obs,
cv.block = 0,
est = c("lc", "ll"),
tkernel = c("Triweight", "Epa", "Gaussian")
)
.tvIRF(
x,
impulse,
response,
y.names,
n.ahead,
ortho,
ortho.cov,
bw.cov,
cumulative
)
.tvOLS.cv(
bw,
x,
y,
z = NULL,
cv.block = 0,
est = c("lc", "ll"),
tkernel = c("Triweight", "Epa", "Gaussian"),
singular.ok = TRUE
)
.tvRE.cv(
bw,
x,
y,
z = NULL,
neq,
obs,
cv.block = 0,
est = c("lc", "ll"),
tkernel = c("Triweight", "Epa", "Gaussian")
)
tvreg.control(maxiter = 100, tol = 1e-05)
A matrix.
A scalar.
A character, either "Triweight" (default), "Epa" or "Gaussian" kernel function.
A character, either "lc" or "ll" for local constant or local linear.
maximum number of iterations for the iterative FGLS estimations.
tolerance level indicating when to stop the iteration for the iterative FGLS estimations
A numeric vector.
A scalar with the mean squared error.
A list of the above components.
.kernel calculates the kernel values of a vector and a given bandwidth
If the estimation is iterative FGLS with maxiter
>1, the convergence criterion is
$$\sqrt{ \frac{ \sum_{i, j}
(B_{i,j,g} - B{i, j, g-1})^2 }{ \sum_{i, j} B_{i, j, g-1}^2 }} < \code{tol}$$
(\(B_{i, j,g}\) is the ith, jth coefficient of the gth iteration step).