Learn R Programming

uGMAR (version 3.1.0)

isStationary_int: Check the stationary and identification conditions of specified GMAR, StMAR or G-StMAR model.

Description

isStationary_int checks the stationary condition and isIdentifiable checks the identification conditions of the specified GMAR, StMAR or G-StMAR model.

Usage

isStationary_int(p, M, params, restricted = FALSE)

isIdentifiable(p, M, params, model = c("GMAR", "StMAR", "G-StMAR"), restricted = FALSE, constraints = NULL)

Arguments

p

a positive integer specifying the order of AR coefficients.

M
For GMAR and StMAR models:

a positive integer specifying the number of mixture components.

For G-StMAR model:

a size (2x1) vector specifying the number of GMAR-type components M1 in the first element and StMAR-type components M2 in the second. The total number of mixture components is M=M1+M2.

params

a real valued parameter vector specifying the model.

For non-restricted models:

For GMAR model:

Size \((M(p+3)-1x1)\) vector \(\theta\)\(=\)(\(\upsilon_{1}\),...,\(\upsilon_{M}\), \(\alpha_{1},...,\alpha_{M-1}\)), where \(\upsilon_{m}\)\(=(\phi_{m,0},\)\(\phi_{m}\)\(, \sigma_{m}^2)\) and \(\phi_{m}\)=\((\phi_{m,1},...,\phi_{m,p}), m=1,...,M\).

For StMAR model:

Size \((M(p+4)-1x1)\) vector (\(\theta, \nu\))\(=\)(\(\upsilon_{1}\),...,\(\upsilon_{M}\), \(\alpha_{1},...,\alpha_{M-1}, \nu_{1},...,\nu_{M}\)).

For G-StMAR model:

Size \((M(p+3)+M2-1x1)\) vector (\(\theta, \nu\))\(=\)(\(\upsilon_{1}\),...,\(\upsilon_{M}\), \(\alpha_{1},...,\alpha_{M-1}, \nu_{M1+1},...,\nu_{M}\)).

For restricted models:

For GMAR model:

Size \((3M+p-1x1)\) vector \(\theta\)\(=(\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(, \sigma_{1}^2,...,\sigma_{M}^2,\alpha_{1},...,\alpha_{M-1})\), where \(\phi\)=\((\phi_{1},...,\phi_{M})\).

For StMAR model:

Size \((4M+p-1x1)\) vector (\(\theta, \nu\))\(=(\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(, \sigma_{1}^2,...,\sigma_{M}^2,\alpha_{1},...,\alpha_{M-1}, \nu_{1},...,\nu_{M})\).

For G-StMAR model:

Size \((3M+M2+p-1x1)\) vector (\(\theta, \nu\))\(=(\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(, \sigma_{1}^2,...,\sigma_{M}^2,\alpha_{1},...,\alpha_{M-1}, \nu_{M1+1},...,\nu_{M})\).

Symbol \(\phi\) denotes an AR coefficient, \(\sigma^2\) a variance, \(\alpha\) a mixing weight and \(\nu\) a degrees of freedom parameter. In the G-StMAR model the first M1 components are GMAR-type and the rest M2 components are StMAR-type. Note that in the case M=1 the parameter \(\alpha\) is dropped, and in the case of StMAR or G-StMAR model the degrees of freedom parameters \(\nu_{m}\) have to be larger than \(2\).

restricted

a logical argument stating whether the AR coefficients \(\phi_{m,1},...,\phi_{m,p}\) are restricted to be the same for all regimes.

model

is "GMAR", "StMAR" or "G-StMAR" model considered? In G-StMAR model the first M1 components are GMAR-type and the rest M2 components are StMAR-type.

constraints

specifies linear constraints applied to the autoregressive parameters.

For non-restricted models:

a list of size \((pxq_{m})\) constraint matrices \(C_{m}\) of full column rank satisfying \(\phi_{m}\)\(=\)\(C_{m}\psi_{m}\) for all \(m=1,...,M\), where \(\phi_{m}\)\(=(\phi_{m,1},...,\phi_{m,p})\) and \(\psi_{m}\)\(=(\psi_{m,1},...,\psi_{m,q_{m}})\).

For restricted models:

a size \((pxq)\) constraint matrix \(C\) of full column rank satisfying \(\phi\)\(=\)\(C\psi\), where \(\phi\)\(=(\phi_{1},...,\phi_{p})\) and \(\psi\)\(=\psi_{1},...,\psi_{q}\).

Symbol \(\phi\) denotes an AR coefficient. Note that regardless of any constraints, the nominal order of AR coefficients is alway p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.

Value

Returns TRUE or FALSE accordingly.

Warning

These functions don't have any argument checks!

Details

These functions don't support models parametrized with general linear constraints.

References

  • Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.

  • Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].

  • There are currently no published references for the G-StMAR model, but it's a straightforward generalization with theoretical properties similar to the GMAR and StMAR models.