mixingWeights_int
calculates the mixing weights of the specified GMAR, StMAR or G-StMAR model and returns them as a matrix.
mixingWeights_int(data, p, M, params, model = c("GMAR", "StMAR",
"G-StMAR"), restricted = FALSE, constraints = NULL,
parametrization = c("intercept", "mean"), checks = TRUE,
to_return = c("mw", "mw_tplus1"))
a numeric vector class 'ts'
object containing the data. NA
values are not supported.
a positive integer specifying the order of AR coefficients.
a positive integer specifying the number of mixture components.
a size (2x1) vector specifying the number of GMAR-type components M1
in the
first element and StMAR-type components M2
in the second. The total number of mixture components is M=M1+M2
.
a real valued parameter vector specifying the model.
Size \((M(p+3)-1x1)\) vector \(\theta\)\(=\)(\(\upsilon_{1}\),...,\(\upsilon_{M}\), \(\alpha_{1},...,\alpha_{M-1}\)), where \(\upsilon_{m}\)\(=(\phi_{m,0},\)\(\phi_{m}\)\(, \sigma_{m}^2)\) and \(\phi_{m}\)=\((\phi_{m,1},...,\phi_{m,p}), m=1,...,M\).
Size \((M(p+4)-1x1)\) vector (\(\theta, \nu\))\(=\)(\(\upsilon_{1}\),...,\(\upsilon_{M}\), \(\alpha_{1},...,\alpha_{M-1}, \nu_{1},...,\nu_{M}\)).
Size \((M(p+3)+M2-1x1)\) vector (\(\theta, \nu\))\(=\)(\(\upsilon_{1}\),...,\(\upsilon_{M}\), \(\alpha_{1},...,\alpha_{M-1}, \nu_{M1+1},...,\nu_{M}\)).
Replace the vectors \(\phi_{m}\) with vectors \(\psi_{m}\) and provide a list of constraint matrices C that satisfy \(\phi_{m}\)\(=\)\(R_{m}\psi_{m}\) for all \(m=1,...,M\), where \(\psi_{m}\)\(=(\psi_{m,1},...,\psi_{m,q_{m}})\).
Size \((3M+p-1x1)\) vector \(\theta\)\(=(\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(, \sigma_{1}^2,...,\sigma_{M}^2,\alpha_{1},...,\alpha_{M-1})\), where \(\phi\)=\((\phi_{1},...,\phi_{M})\).
Size \((4M+p-1x1)\) vector (\(\theta, \nu\))\(=(\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(, \sigma_{1}^2,...,\sigma_{M}^2,\alpha_{1},...,\alpha_{M-1}, \nu_{1},...,\nu_{M})\).
Size \((3M+M2+p-1x1)\) vector (\(\theta, \nu\))\(=(\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(, \sigma_{1}^2,...,\sigma_{M}^2,\alpha_{1},...,\alpha_{M-1}, \nu_{M1+1},...,\nu_{M})\).
Replace the vector \(\phi\) with vector \(\psi\) and provide a constraint matrix \(C\) that satisfies \(\phi\)\(=\)\(R\psi\), where \(\psi\)\(=(\psi_{1},...,\psi_{q})\).
Symbol \(\phi\) denotes an AR coefficient, \(\sigma^2\) a variance, \(\alpha\) a mixing weight and \(\nu\) a degrees of
freedom parameter. If parametrization=="mean"
just replace each intercept term \(\phi_{m,0}\) with regimewise mean
\(\mu_m = \phi_{m,0}/(1-\sum\phi_{i,m})\). In the G-StMAR model the first M1
components are GMAR-type
and the rest M2
components are StMAR-type.
Note that in the case M=1 the parameter \(\alpha\) is dropped, and in the case of StMAR or G-StMAR model
the degrees of freedom parameters \(\nu_{m}\) have to be larger than \(2\).
is "GMAR", "StMAR" or "G-StMAR" model considered? In G-StMAR model the first M1
components
are GMAR-type and the rest M2
components are StMAR-type.
a logical argument stating whether the AR coefficients \(\phi_{m,1},...,\phi_{m,p}\) are restricted to be the same for all regimes.
specifies linear constraints applied to the autoregressive parameters.
a list of size \((pxq_{m})\) constraint matrices \(C_{m}\) of full column rank satisfying \(\phi_{m}\)\(=\)\(C_{m}\psi_{m}\) for all \(m=1,...,M\), where \(\phi_{m}\)\(=(\phi_{m,1},...,\phi_{m,p})\) and \(\psi_{m}\)\(=(\psi_{m,1},...,\psi_{m,q_{m}})\).
a size \((pxq)\) constraint matrix \(C\) of full column rank satisfying \(\phi\)\(=\)\(C\psi\), where \(\phi\)\(=(\phi_{1},...,\phi_{p})\) and \(\psi\)\(=\psi_{1},...,\psi_{q}\).
Symbol \(\phi\) denotes an AR coefficient. Note that regardless of any constraints, the nominal order of AR coefficients is
alway p
for all regimes.
Ignore or set to NULL
if applying linear constraints is not desired.
is the model parametrized with the "intercepts" \(\phi_{m,0}\) or "means" \(\mu_m = \phi_{m,0}/(1-\sum\phi_{i,m})\)?
an (optional) logical argument defining whether argument checks are made. If FALSE
then no argument checks
such as stationary checks etc are made. The default is TRUE
.
should the returned object the mixing weights or mixing weights ("mw"
) including
value for \(alpha_{m,T+1}\) ("mw_tplus1"
)?
to_return=="mw"
:a size ((n_obs-p)xM) matrix containing the mixing weights: for m:th component in m:th column.
to_return=="mw_tplus1"
:a size ((n_obs-p+1)xM) matrix containing the mixing weights: for m:th component in m:th column. The last row is for \(\alpha_{m,T+1}\)
Galbraith, R., Galbraith, J. 1974. On the inverses of some patterned matrices arising in the theory of stationary time series. Journal of Applied Probability 11, 63-71.
Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
There are currently no published references for the G-StMAR model, but it's a straightforward generalization with theoretical properties similar to the GMAR and StMAR models.