Learn R Programming

uGMAR (version 3.1.0)

reformParameters: Reform any parameter vector into standard form.

Description

reformParameters takes a parameter vector of any (non-constrained) GMAR, StMAR or G-StMAR model and returns a list with the parameter vector in the standard form, parameter matrix containing AR coefficients and component variances, mixing weights alphas and in case of StMAR or G-StMAR model also degrees of freedom parameters.

Usage

reformParameters(p, M, params, model = c("GMAR", "StMAR", "G-StMAR"),
  restricted = FALSE)

Arguments

p

a positive integer specifying the order of AR coefficients.

M
For GMAR and StMAR models:

a positive integer specifying the number of mixture components.

For G-StMAR model:

a size (2x1) vector specifying the number of GMAR-type components M1 in the first element and StMAR-type components M2 in the second. The total number of mixture components is M=M1+M2.

params

a real valued parameter vector specifying the model.

For non-restricted models:

For GMAR model:

Size \((M(p+3)-1x1)\) vector \(\theta\)\(=\)(\(\upsilon_{1}\),...,\(\upsilon_{M}\), \(\alpha_{1},...,\alpha_{M-1}\)), where \(\upsilon_{m}\)\(=(\phi_{m,0},\)\(\phi_{m}\)\(, \sigma_{m}^2)\) and \(\phi_{m}\)=\((\phi_{m,1},...,\phi_{m,p}), m=1,...,M\).

For StMAR model:

Size \((M(p+4)-1x1)\) vector (\(\theta, \nu\))\(=\)(\(\upsilon_{1}\),...,\(\upsilon_{M}\), \(\alpha_{1},...,\alpha_{M-1}, \nu_{1},...,\nu_{M}\)).

For G-StMAR model:

Size \((M(p+3)+M2-1x1)\) vector (\(\theta, \nu\))\(=\)(\(\upsilon_{1}\),...,\(\upsilon_{M}\), \(\alpha_{1},...,\alpha_{M-1}, \nu_{M1+1},...,\nu_{M}\)).

For restricted models:

For GMAR model:

Size \((3M+p-1x1)\) vector \(\theta\)\(=(\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(, \sigma_{1}^2,...,\sigma_{M}^2,\alpha_{1},...,\alpha_{M-1})\), where \(\phi\)=\((\phi_{1},...,\phi_{M})\).

For StMAR model:

Size \((4M+p-1x1)\) vector (\(\theta, \nu\))\(=(\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(, \sigma_{1}^2,...,\sigma_{M}^2,\alpha_{1},...,\alpha_{M-1}, \nu_{1},...,\nu_{M})\).

For G-StMAR model:

Size \((3M+M2+p-1x1)\) vector (\(\theta, \nu\))\(=(\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(, \sigma_{1}^2,...,\sigma_{M}^2,\alpha_{1},...,\alpha_{M-1}, \nu_{M1+1},...,\nu_{M})\).

Symbol \(\phi\) denotes an AR coefficient, \(\sigma^2\) a variance, \(\alpha\) a mixing weight and \(\nu\) a degrees of freedom parameter. In the G-StMAR model the first M1 components are GMAR-type and the rest M2 components are StMAR-type. Note that in the case M=1 the parameter \(\alpha\) is dropped, and in the case of StMAR or G-StMAR model the degrees of freedom parameters \(\nu_{m}\) have to be larger than \(2\).

model

is "GMAR", "StMAR" or "G-StMAR" model considered? In G-StMAR model the first M1 components are GMAR-type and the rest M2 components are StMAR-type.

restricted

a logical argument stating whether the AR coefficients \(\phi_{m,1},...,\phi_{m,p}\) are restricted to be the same for all regimes.

Value

Returns a list with...

$params

parameter vector in the standard form.

$pars

corresponding parameter matrix containing AR coefficients and component variances. First row for phi0 or means depending on the parametrization. Column for each component.

$alphas

numeric vector containing mixing weights for all components (also for the last one).

$dfs

numeric vector containing degrees of freedom parameters for all components. Returned only if model == "StMAR" or model == "G-StMAR".

Details

This function does not support models parametrized with general linear constraints! Nor does it have any argument checks.