Learn R Programming

⚠️There's a newer version (3.5.2) of this package.Take me there.

uGMAR

The goal of uGMAR is to provide tools for analysing Gaussian mixture autoregressive (GMAR), Student’s t mixture Autoregressive (StMAR) and Gaussian and Student’s t mixture autoregressive (G-StMAR) models. uGMAR provides functions for unconstrained and constrained maximum likelihood estimation of the model parameters, quantile residual based model diagnostics, simulation from the processes, and forecasting.

Installation

You can install the released version of uGMAR from CRAN with:

install.packages("uGMAR")

And the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("saviviro/uGMAR")

Example

This is a basic example how to estimate a GMAR model to data. For details about the example data “logVIX” see ?logVIX. The estimation process is computationally demanding and takes advantage of parallel computing. After estimating the model, it’s shown by simple examples how to conduct some further analysis.

## Estimate a GMAR(1, 2) model to logarithmized VIX data
data(logVIX, package="uGMAR")
fit <- fitGSMAR(data=logVIX, p=1, M=2, model="GMAR")
fit
summary(fit) # Approximate standard errors in brackets
plot(fit)

get_gradient(fit) # The first order condition
get_soc(fit) # The second order condition (eigenvalues of approximated Hessian)
profile_logliks(fit) # Plot the profile log-likelihood functions

## Quantile residual diagnostics
quantileResidualPlot(fit)
diagnosticPlot(fit)
qrt <- quantileResidualTests(fit)

## Simulate a sample path from the estimated process
sim <- simulateGSMAR(fit, nsimu=10)

## Forecast future values of the process
predict(fit, n_ahead=10)

References

  • Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
  • Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student’s t-distribution. arXiv:1805.04010 ** eco**n.E**M **
  • There are currently no published references for the G-StMAR model, but it’s a straightforward generalization with theoretical properties similar to the GMAR and StMAR models.

Copy Link

Version

Install

install.packages('uGMAR')

Monthly Downloads

392

Version

3.2.2

License

GPL-3

Maintainer

Savi Virolainen

Last Published

January 16th, 2020

Functions in uGMAR (3.2.2)

calc_gradient

Calculate gradient or Hessian matrix
GSMAR

Create object of class 'gsmar' defining a GMAR, StMAR, or G-StMAR model
all_pos_ints

Check whether all arguments are stricly positive natural numbers
checkPM

Check that p and M are correctly set
checkConstraintMat

Check the constraint matrices
add_dfs

Add random dfs to a vector
GAfit

Genetic algorithm for preliminary estimation of GMAR, StMAR, or G-StMAR model
get_ar_roots

Calculate absolute values of the roots of the AR characteristic polynomials
get_IC

Calculate AIC, HQIC and BIC
isStationary_int

Check the stationarity and identification conditions of specified GMAR, StMAR, or G-StMAR model.
changeRegime

Change the specified regime of parameter vector to the given regime-parameter vector
fitGSMAR

Estimate Gaussian or Student's t Mixture Autoregressive model
logVIX

CBOE Volatility Index: logVIX
diagnosticPlot

Quantile residual based diagnostic plots for GMAR, StMAR, and G-StMAR models
condMoments

Calculate conditional moments of GMAR, StMAR, or G-StMAR model
randomIndividual

Create random GMAR, StMAR, or G-StMAR model compatible parameter vector
extractRegime

Extract regime from a parameter vector
alt_gsmar

Construct a GSMAR model based on results from an arbitrary estimation round of fitGSMAR
get_regime_means

Calculate regime specific means \(\mu_{m}\)
check_model

Check that the argument 'model' is correctly specified.
get_minval

Returns the default smallest allowed log-likelihood for given data.
get_regime_autocovs

Calculate regime specific autocovariances \(\gamma\)\(_{m,p}\)
mixingWeights

Calculate mixing weights of GMAR, StMAR or G-StMAR model
plot.qrtest

Quantile residual tests for GMAR, StMAR , and G-StMAR models
check_params_length

Check that the parameter vector has the correct dimension
iterate_more

Maximum likelihood estimation of GMAR, StMAR, or G-StMAR model with preliminary estimates
loglikelihood

Compute the log-likelihood of GMAR, StMAR, or G-StMAR model
check_data

Check that given object contains data
loglikelihood_int

Compute the log-likelihood of GMAR, StMAR, or G-StMAR model
pick_phi0

Pick phi0 or mean parameters from parameter vector
random_regime

Create random regime parameters
stmar_to_gstmar

Estimate a G-StMAR model based on a StMAR model with large degrees of freedom parameters
predict.gsmar

Forecast GMAR, StMAR, or G-StMAR process
random_arcoefs

Create random AR coefficients
plot.gsmarpred

Plot method for class 'gsmarpred' objects
print.gsmarsum

Print method from objects of class 'gsmarsum'
print.gsmarpred

Print method for class 'gsmarpred' objects
pick_dfs

Pick degrees of freedom parameters from a parameter vector
quantileResidualPlot

Plot quantile residual time series and histogram
check_gsmar

Check that given object has class attribute 'gsmar'
get_regime_vars

Calculate regime specific variances \(\gamma_{m,0}\)
uGMAR

uGMAR: Estimate Univariate Gaussian and Student's t Mixture Autoregressive Models
stmarpars_to_gstmar

Transform a StMAR model parameter vector to a corresponding G-StMAR model parameter vector with large dfs parameters reduced.
parameterChecks

Check the parameter vector is specified correctly
get_varying_h

Get differences 'h' which are adjusted for overly large degrees of freedom parameters
pick_pars

Pick \(\phi_0\) (or \(\mu\)), AR-coefficients, and variance parameters from a parameter vector
isStationary

Check the stationary condition of specified GMAR, StMAR, or G-StMAR model.
randomIndividual_int

Create random GMAR, StMAR, or G-StMAR model compatible parameter vector
VIX

CBOE Volatility Index: VIX
checkAndCorrectData

Check that the data is set correctly and correct if not
pick_alphas

Pick mixing weights parameters from parameter vector
reformParameters

Reform any parameter vector into standard form.
IE

University of Michigan: inflation expectation time series: IE
quantileResiduals_int

Compute quantile residuals of GMAR, StMAR, or G-StMAR model
change_parametrization

Change parametrization of a parameter vector
quantileResiduals

Compute quantile residuals of GMAR, StMAR, or G-StMAR model
format_valuef

Function factory for formatting values
profile_logliks

Plot profile log-likehoods around the estimates
removeAllConstraints

Transform constrained and restricted parameter vector into the regular form
simulateGSMAR

Simulate values from GMAR, StMAR, and G-StMAR processes
regime_distance

Calculate "distance" between two regimes
reformRestrictedPars

Reform parameter vector with restricted autoregressive parameters to correspond non-restricted parameter vector.
uncondMoments

Calculate unconditional mean, variance, first p autocovariances and autocorrelations of the GSMAR process.
getOmega

Generate the covariance matrix Omega for quantile residual tests
uncondMoments_int

Calculate unconditional mean, variance, and the first p autocovariances and autocorrelations of a GSMAR process.
sortComponents

Sort the mixture components of a GMAR, StMAR, or G-StMAR model
mixingWeights_int

Calculate mixing weights of a GMAR, StMAR, or G-StMAR model
swap_parametrization

Swap the parametrization of object of class 'gsmar' defining a GMAR, StMAR, or G-StMAR model
warn_dfs

Warn about large degrees of freedom parameter values
standardErrors

Calculate standard errors for estimates of a GMAR, StMAR, or GStMAR model
reformConstrainedPars

Reform parameter vector with linear constraints to correspond non-constrained parameter vector.
nParams

Calculate the number of parameters
add_data

Add data to object of class 'gsmar' defining a GMAR, StMAR, or G-StMAR model