Learn R Programming

⚠️There's a newer version (3.5.2) of this package.Take me there.

uGMAR

The goal of uGMAR is to provide tools for analysing Gaussian mixture autoregressive (GMAR), Student’s t mixture Autoregressive (StMAR) and Gaussian and Student’s t mixture autoregressive (G-StMAR) models. uGMAR provides functions for unconstrained and constrained maximum likelihood estimation of the model parameters, quantile residual based model diagnostics, simulation from the processes, and forecasting.

Installation

You can install the released version of uGMAR from CRAN with:

install.packages("uGMAR")

And the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("saviviro/uGMAR")

Example

This is a basic example how to estimate a GMAR model to data. The example data is simulated from a GMAR p=1, M=2 process. The estimation process is computationally demanding and takes advantage of parallel computing. After estimating the model, it’s shown by simple examples how to conduct some further analysis.

## Estimate a GMAR(1, 2) model and examine the estimates
data(simudata, package="uGMAR")
fit <- fitGSMAR(data=simudata, p=1, M=2, model="GMAR")
fit
summary(fit) # Approximate standard errors in brackets
plot(fit)

get_gradient(fit) # The first order condition
get_soc(fit) # The second order condition (eigenvalues of approximated Hessian)
profile_logliks(fit) # Plot the profile log-likelihood functions

## Quantile residual diagnostics
quantileResidualPlot(fit)
diagnosticPlot(fit)
qrt <- quantileResidualTests(fit)

## Simulate a sample path from the estimated process
sim <- simulateGSMAR(fit, nsimu=10)

## Forecast future values of the process
predict(fit, n_ahead=10, pi=c(0.95, 0.8))

References

  • Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
  • Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student’s t-distribution. arXiv:1805.04010 ** eco**n.E**M **
  • Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student’s t-distribution. arXiv:2003.05221 [econ.EM].

Copy Link

Version

Install

install.packages('uGMAR')

Monthly Downloads

392

Version

3.2.5

License

GPL-3

Maintainer

Savi Virolainen

Last Published

April 4th, 2020

Functions in uGMAR (3.2.5)

add_dfs

Add random dfs to a vector
GAfit

Genetic algorithm for preliminary estimation of GMAR, StMAR, or G-StMAR model
all_pos_ints

Check whether all arguments are stricly positive natural numbers
alt_gsmar

Construct a GSMAR model based on results from an arbitrary estimation round of fitGSMAR
change_parametrization

Change parametrization of a parameter vector
T10Y1Y

Spread between 10-Year and 1-Year treasury rates: T10Y1Y
add_data

Add data to object of class 'gsmar' defining a GMAR, StMAR, or G-StMAR model
calc_gradient

Calculate gradient or Hessian matrix
changeRegime

Change the specified regime of parameter vector to the given regime-parameter vector
GSMAR

Create object of class 'gsmar' defining a GMAR, StMAR, or G-StMAR model
check_params_length

Check that the parameter vector has the correct dimension
checkPM

Check that p and M are correctly set
condMoments

Calculate conditional moments of GMAR, StMAR, or G-StMAR model
check_gsmar

Check that given object has class attribute 'gsmar'
check_data

Check that given object contains data
check_model

Check that the argument 'model' is correctly specified.
checkConstraintMat

Check the constraint matrices
checkAndCorrectData

Check that the data is set correctly and correct if not
condmomentPlot

Condinional mean or variance plot for GMAR, StMAR, and G-StMAR models
diagnosticPlot

Quantile residual based diagnostic plots for GMAR, StMAR, and G-StMAR models
get_IC

Calculate AIC, HQIC and BIC
format_valuef

Function factory for formatting values
getOmega

Generate the covariance matrix Omega for quantile residual tests
get_regime_vars

Calculate regime specific variances \(\gamma_{m,0}\)
get_regime_means

Calculate regime specific means \(\mu_{m}\)
get_ar_roots

Calculate absolute values of the roots of the AR characteristic polynomials
extractRegime

Extract regime from a parameter vector
fitGSMAR

Estimate Gaussian or Student's t Mixture Autoregressive model
mixingWeights

Calculate mixing weights of GMAR, StMAR or G-StMAR model
get_varying_h

Get differences 'h' which are adjusted for overly large degrees of freedom parameters
isStationary

Check the stationary condition of specified GMAR, StMAR, or G-StMAR model.
nParams

Calculate the number of parameters
parameterChecks

Check the parameter vector is specified correctly
loglikelihood

Compute the log-likelihood of GMAR, StMAR, or G-StMAR model
loglikelihood_int

Compute the log-likelihood of GMAR, StMAR, or G-StMAR model
mixingWeights_int

Calculate mixing weights of a GMAR, StMAR, or G-StMAR model
get_minval

Returns the default smallest allowed log-likelihood for given data.
get_regime_autocovs

Calculate regime specific autocovariances \(\gamma\)\(_{m,p}\)
profile_logliks

Plot profile log-likehoods around the estimates
quantileResidualPlot

Plot quantile residual time series and histogram
print.gsmarsum

Print method from objects of class 'gsmarsum'
print.gsmarpred

Print method for class 'gsmarpred' objects
pick_alphas

Pick mixing weights parameters from parameter vector
pick_dfs

Pick degrees of freedom parameters from a parameter vector
iterate_more

Maximum likelihood estimation of GMAR, StMAR, or G-StMAR model with preliminary estimates
pick_phi0

Pick phi0 or mean parameters from parameter vector
isStationary_int

Check the stationarity and identification conditions of specified GMAR, StMAR, or G-StMAR model.
pick_pars

Pick \(\phi_0\) (or \(\mu\)), AR-coefficients, and variance parameters from a parameter vector
quantileResiduals_int

Compute quantile residuals of GMAR, StMAR, or G-StMAR model
plot.gsmarpred

Plot method for class 'gsmarpred' objects
reformConstrainedPars

Reform parameter vector with linear constraints to correspond non-constrained parameter vector.
random_regime

Create random regime parameters
reformParameters

Reform any parameter vector into standard form.
randomIndividual

Create random GMAR, StMAR, or G-StMAR model compatible parameter vector
predict.gsmar

Forecast GMAR, StMAR, or G-StMAR process
reformRestrictedPars

Reform parameter vector with restricted autoregressive parameters to correspond non-restricted parameter vector.
regime_distance

Calculate "distance" between two regimes
removeAllConstraints

Transform constrained and restricted parameter vector into the regular form
stmar_to_gstmar

Estimate a G-StMAR model based on a StMAR model with large degrees of freedom parameters
uGMAR

uGMAR: Estimate Univariate Gaussian and Student's t Mixture Autoregressive Models
uncondMoments

Calculate unconditional mean, variance, first p autocovariances and autocorrelations of the GSMAR process.
randomIndividual_int

Create random GMAR, StMAR, or G-StMAR model compatible parameter vector
simudata

Simulated data
random_arcoefs

Create random AR coefficients
swap_parametrization

Swap the parametrization of object of class 'gsmar' defining a GMAR, StMAR, or G-StMAR model
uncondMoments_int

Calculate unconditional mean, variance, and the first p autocovariances and autocorrelations of a GSMAR process.
simulateGSMAR

Simulate values from GMAR, StMAR, and G-StMAR processes
stmarpars_to_gstmar

Transform a StMAR model parameter vector to a corresponding G-StMAR model parameter vector with large dfs parameters reduced.
plot.qrtest

Quantile residual tests for GMAR, StMAR , and G-StMAR models
warn_dfs

Warn about large degrees of freedom parameter values
quantileResiduals

Compute quantile residuals of GMAR, StMAR, or G-StMAR model
standardErrors

Calculate standard errors for estimates of a GMAR, StMAR, or GStMAR model
sortComponents

Sort the mixture components of a GMAR, StMAR, or G-StMAR model