Learn R Programming

uGMAR (version 3.2.6)

isStationary: Check the stationary condition of specified GMAR, StMAR, or G-StMAR model.

Description

isStationary checks the stationarity condition of the specified GMAR, StMAR, or G-StMAR model.

Usage

isStationary(
  p,
  M,
  params,
  model = c("GMAR", "StMAR", "G-StMAR"),
  restricted = FALSE,
  constraints = NULL
)

Arguments

p

a positive integer specifying the autoregressive order of the model.

M
For GMAR and StMAR models:

a positive integer specifying the number of mixture components.

For G-StMAR models:

a size (2x1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components M2 in the second element. The total number of mixture components is M=M1+M2.

params

a real valued parameter vector specifying the model.

For non-restricted models:

For GMAR model:

Size \((M(p+3)-1x1)\) vector \(\theta\)\(=\)(\(\upsilon_{1}\),...,\(\upsilon_{M}\), \(\alpha_{1},...,\alpha_{M-1}\)), where \(\upsilon_{m}\)\(=(\phi_{m,0},\)\(\phi_{m}\)\(, \sigma_{m}^2)\) and \(\phi_{m}\)=\((\phi_{m,1},...,\phi_{m,p}), m=1,...,M\).

For StMAR model:

Size \((M(p+4)-1x1)\) vector (\(\theta, \nu\))\(=\)(\(\upsilon_{1}\),...,\(\upsilon_{M}\), \(\alpha_{1},...,\alpha_{M-1}, \nu_{1},...,\nu_{M}\)).

For G-StMAR model:

Size \((M(p+3)+M2-1x1)\) vector (\(\theta, \nu\))\(=\)(\(\upsilon_{1}\),...,\(\upsilon_{M}\), \(\alpha_{1},...,\alpha_{M-1}, \nu_{M1+1},...,\nu_{M}\)).

With linear constraints:

Replace the vectors \(\phi_{m}\) with vectors \(\psi_{m}\) and provide a list of constraint matrices C that satisfy \(\phi_{m}\)\(=\)\(R_{m}\psi_{m}\) for all \(m=1,...,M\), where \(\psi_{m}\)\(=(\psi_{m,1},...,\psi_{m,q_{m}})\).

For restricted models:

For GMAR model:

Size \((3M+p-1x1)\) vector \(\theta\)\(=(\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(, \sigma_{1}^2,...,\sigma_{M}^2,\alpha_{1},...,\alpha_{M-1})\), where \(\phi\)=\((\phi_{1},...,\phi_{M})\).

For StMAR model:

Size \((4M+p-1x1)\) vector (\(\theta, \nu\))\(=(\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(, \sigma_{1}^2,...,\sigma_{M}^2,\alpha_{1},...,\alpha_{M-1}, \nu_{1},...,\nu_{M})\).

For G-StMAR model:

Size \((3M+M2+p-1x1)\) vector (\(\theta, \nu\))\(=(\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(, \sigma_{1}^2,...,\sigma_{M}^2,\alpha_{1},...,\alpha_{M-1}, \nu_{M1+1},...,\nu_{M})\).

With linear constraints:

Replace the vector \(\phi\) with vector \(\psi\) and provide a constraint matrix \(C\) that satisfies \(\phi\)\(=\)\(R\psi\), where \(\psi\)\(=(\psi_{1},...,\psi_{q})\).

Symbol \(\phi\) denotes an AR coefficient, \(\sigma^2\) a variance, \(\alpha\) a mixing weight, and \(\nu\) a degrees of freedom parameter. If parametrization=="mean", just replace each intercept term \(\phi_{m,0}\) with regimewise mean \(\mu_m = \phi_{m,0}/(1-\sum\phi_{i,m})\). In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. Note that in the case M=1, the parameter \(\alpha\) is dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters \(\nu_{m}\) have to be larger than \(2\).

model

is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type.

restricted

a logical argument stating whether the AR coefficients \(\phi_{m,1},...,\phi_{m,p}\) are restricted to be the same for all regimes.

constraints

specifies linear constraints applied to the autoregressive parameters.

For non-restricted models:

a list of size \((pxq_{m})\) constraint matrices \(C_{m}\) of full column rank satisfying \(\phi_{m}\)\(=\)\(C_{m}\psi_{m}\) for all \(m=1,...,M\), where \(\phi_{m}\)\(=(\phi_{m,1},...,\phi_{m,p})\) and \(\psi_{m}\)\(=(\psi_{m,1},...,\psi_{m,q_{m}})\).

For restricted models:

a size \((pxq)\) constraint matrix \(C\) of full column rank satisfying \(\phi\)\(=\)\(C\psi\), where \(\phi\)\(=(\phi_{1},...,\phi_{p})\) and \(\psi\)\(=\psi_{1},...,\psi_{q}\).

Symbol \(\phi\) denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.

Value

Returns TRUE or FALSE accordingly.

Details

This function falsely returns FALSE for stationary models when the parameter is extremely close to the boundary of the stationarity region.

References

  • Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.

  • Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].

  • Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's t-distribution. arXiv:2003.05221 [econ.EM].

Examples

Run this code
# NOT RUN {
# GMAR model
params22 <- c(0.4, 0.39, 0.6, 0.3, 0.4, 0.1, 0.6, 0.3, 0.8)
isStationary(2, 2, params22)

# StMAR model
params12t <- c(-0.3, 1, 0.9, 0.1, 0.8, 0.6, 0.7, 10, 12)
isStationary(1, 2, params12t, model="StMAR")

# G-StMAR model
params12gs <- c(1, 0.1, 1, 2, 0.2, 2, 0.8, 20)
isStationary(1, c(1, 1), params12gs, model="G-StMAR")

# Restricted GMAR model
params13r <- c(0.1, 0.2, 0.3, -0.99, 0.1, 0.2, 0.3, 0.5, 0.3)
isStationary(1, 3, params13r, restricted=TRUE)

# Restricted StMAR model
params22tr <- c(-0.1, -0.2, 0.01, 0.99, 0.3, 0.4, 0.9, 3, 13)
isStationary(2, 2, params22tr, model="StMAR", restricted=TRUE)

# Restricted G-StMAR model
params13gsr <- c(1, 2, 3, -0.99, 1, 2, 3, 0.5, 0.4, 20, 30)
isStationary(1, c(1, 2), params13gsr, model="G-StMAR", restricted=TRUE)

# GMAR model as a mixture of AR(2) and AR(1) models
constraints <- list(diag(1, ncol=2, nrow=2), as.matrix(c(1, 0)))
params22c <- c(1.2, 0.8, 0.2, 0.3, 3.3, 0.7, 3, 0.8)
isStationary(2, 2, params22c, constraints=constraints)

# Such StMAR(3,2) that the AR coefficients are restricted to be the
# same for both regimes and that the second AR coefficients are
# constrained to zero.
params32trc <- c(1, 2, 0.8, -0.3, 1, 2, 0.7, 11, 12)
isStationary(3, 2, params32trc, model="StMAR", restricted=TRUE,
             constraints=matrix(c(1, 0, 0, 0, 0, 1), ncol=2))
# }

Run the code above in your browser using DataLab