stmarpars_to_gstmar
transforms a StMAR model parameter vector to a corresponding
G-StMAR model parameter vector with large dfs parameters reduced by swicthing the related regimes
to be GMAR type.
stmarpars_to_gstmar(
p,
M,
params,
restricted = FALSE,
constraints = NULL,
maxdf = 100
)
a positive integer specifying the autoregressive order of the model.
a positive integer specifying the number of mixture components.
a size (2x1) integer vector specifying the number of GMAR type components M1
in the
first element and StMAR type components M2
in the second element. The total number of mixture components is M=M1+M2
.
a real valued parameter vector specifying the model.
Size \((M(p+3)-1x1)\) vector \(\theta\)\(=\)(\(\upsilon_{1}\),...,\(\upsilon_{M}\), \(\alpha_{1},...,\alpha_{M-1}\)), where \(\upsilon_{m}\)\(=(\phi_{m,0},\)\(\phi_{m}\)\(, \sigma_{m}^2)\) and \(\phi_{m}\)=\((\phi_{m,1},...,\phi_{m,p}), m=1,...,M\).
Size \((M(p+4)-1x1)\) vector (\(\theta, \nu\))\(=\)(\(\upsilon_{1}\),...,\(\upsilon_{M}\), \(\alpha_{1},...,\alpha_{M-1}, \nu_{1},...,\nu_{M}\)).
Size \((M(p+3)+M2-1x1)\) vector (\(\theta, \nu\))\(=\)(\(\upsilon_{1}\),...,\(\upsilon_{M}\), \(\alpha_{1},...,\alpha_{M-1}, \nu_{M1+1},...,\nu_{M}\)).
Replace the vectors \(\phi_{m}\) with vectors \(\psi_{m}\) and provide a list of constraint matrices C that satisfy \(\phi_{m}\)\(=\)\(R_{m}\psi_{m}\) for all \(m=1,...,M\), where \(\psi_{m}\)\(=(\psi_{m,1},...,\psi_{m,q_{m}})\).
Size \((3M+p-1x1)\) vector \(\theta\)\(=(\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(, \sigma_{1}^2,...,\sigma_{M}^2,\alpha_{1},...,\alpha_{M-1})\), where \(\phi\)=\((\phi_{1},...,\phi_{M})\).
Size \((4M+p-1x1)\) vector (\(\theta, \nu\))\(=(\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(, \sigma_{1}^2,...,\sigma_{M}^2,\alpha_{1},...,\alpha_{M-1}, \nu_{1},...,\nu_{M})\).
Size \((3M+M2+p-1x1)\) vector (\(\theta, \nu\))\(=(\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(, \sigma_{1}^2,...,\sigma_{M}^2,\alpha_{1},...,\alpha_{M-1}, \nu_{M1+1},...,\nu_{M})\).
Replace the vector \(\phi\) with vector \(\psi\) and provide a constraint matrix \(C\) that satisfies \(\phi\)\(=\)\(R\psi\), where \(\psi\)\(=(\psi_{1},...,\psi_{q})\).
Symbol \(\phi\) denotes an AR coefficient, \(\sigma^2\) a variance, \(\alpha\) a mixing weight, and \(\nu\) a degrees of
freedom parameter. If parametrization=="mean"
, just replace each intercept term \(\phi_{m,0}\) with regimewise mean
\(\mu_m = \phi_{m,0}/(1-\sum\phi_{i,m})\). In the G-StMAR model, the first M1
components are GMAR type
and the rest M2
components are StMAR type.
Note that in the case M=1, the parameter \(\alpha\) is dropped, and in the case of StMAR or G-StMAR model,
the degrees of freedom parameters \(\nu_{m}\) have to be larger than \(2\).
a logical argument stating whether the AR coefficients \(\phi_{m,1},...,\phi_{m,p}\) are restricted to be the same for all regimes.
specifies linear constraints applied to the autoregressive parameters.
a list of size \((pxq_{m})\) constraint matrices \(C_{m}\) of full column rank satisfying \(\phi_{m}\)\(=\)\(C_{m}\psi_{m}\) for all \(m=1,...,M\), where \(\phi_{m}\)\(=(\phi_{m,1},...,\phi_{m,p})\) and \(\psi_{m}\)\(=(\psi_{m,1},...,\psi_{m,q_{m}})\).
a size \((pxq)\) constraint matrix \(C\) of full column rank satisfying \(\phi\)\(=\)\(C\psi\), where \(\phi\)\(=(\phi_{1},...,\phi_{p})\) and \(\psi\)\(=\psi_{1},...,\psi_{q}\).
Symbol \(\phi\) denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order
is always p
for all regimes.
Ignore or set to NULL
if applying linear constraints is not desired.
regimes with degrees of freedom parameter value larger than this will be turned into GMAR type.
Returns a list with three elements: $params
contains the corresponding G-StMAR model
parameter vector, $reg_order
contains the permutation that was applied to the regimes
(GMAR type components first, and decreasing ordering by mixing weight parameters), and
$M
a vector of length two containing the number of GMAR type regimes in the first element
and the number of StMAR type regimes in the second.
# NOT RUN {
params12 <- c(2, 0.9, 0.1, 0.8, 0.5, 0.5, 0.4, 12, 300)
stmarpars_to_gstmar(1, 2, params12, maxdf=100)
# }
Run the code above in your browser using DataLab