stmarpars_to_gstmar
transforms a StMAR model parameter vector to a corresponding
G-StMAR model parameter vector with large dfs parameters reduced by switching the related regimes
to be GMAR type.
stmarpars_to_gstmar(
p,
M,
params,
model = c("GMAR", "StMAR", "G-StMAR"),
restricted = FALSE,
constraints = NULL,
maxdf = 100
)
Returns a list with three elements: $params
contains the corresponding G-StMAR model
parameter vector, $reg_order
contains the permutation that was applied to the regimes
(GMAR type components first, and decreasing ordering by mixing weight parameters), and
$M
a vector of length two containing the number of GMAR type regimes in the first element
and the number of StMAR type regimes in the second.
a positive integer specifying the autoregressive order of the model.
a positive integer specifying the number of mixture components.
a size (2x1) integer vector specifying the number of GMAR type components M1
in the
first element and StMAR type components M2
in the second element. The total number of mixture components is M=M1+M2
.
a real valued parameter vector specifying the model.
Size \((M(p+3)+M-M1-1x1)\) vector \(\theta\)\(=\)(\(\upsilon_{1}\)\(,...,\)\(\upsilon_{M}\), \(\alpha_{1},...,\alpha_{M-1},\)\(\nu\)) where
\(\upsilon_{m}\)\(=(\phi_{m,0},\)\(\phi_{m}\)\(,\)\(\sigma_{m}^2)\)
\(\phi_{m}\)\(=(\phi_{m,1},...,\phi_{m,p}), m=1,...,M\)
\(\nu\)\(=(\nu_{M1+1},...,\nu_{M})\)
\(M1\) is the number of GMAR type regimes.
In the GMAR model, \(M1=M\) and the parameter \(\nu\) dropped. In the StMAR model, \(M1=0\).
If the model imposes linear constraints on the autoregressive parameters:
Replace the vectors \(\phi_{m}\) with the vectors \(\psi_{m}\) that satisfy
\(\phi_{m}\)\(=\)\(C_{m}\psi_{m}\) (see the argument constraints
).
Size \((3M+M-M1+p-1x1)\) vector \(\theta\)\(=(\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(,\) \(\sigma_{1}^2,...,\sigma_{M}^2,\)\(\alpha_{1},...,\alpha_{M-1},\)\(\nu\)), where \(\phi\)=\((\phi_{1},...,\phi_{p})\) contains the AR coefficients, which are common for all regimes.
If the model imposes linear constraints on the autoregressive parameters:
Replace the vector \(\phi\) with the vector \(\psi\) that satisfies
\(\phi\)\(=\)\(C\psi\) (see the argument constraints
).
Symbol \(\phi\) denotes an AR coefficient, \(\sigma^2\) a variance, \(\alpha\) a mixing weight, and \(\nu\) a degrees of
freedom parameter. If parametrization=="mean"
, just replace each intercept term \(\phi_{m,0}\) with the regimewise mean
\(\mu_m = \phi_{m,0}/(1-\sum\phi_{i,m})\). In the G-StMAR model, the first M1
components are GMAR type
and the rest M2
components are StMAR type.
Note that in the case M=1, the mixing weight parameters \(\alpha\) are dropped, and in the case of StMAR or G-StMAR model,
the degrees of freedom parameters \(\nu\) have to be larger than \(2\).
is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1
components
are GMAR type and the rest M2
components are StMAR type.
a logical argument stating whether the AR coefficients \(\phi_{m,1},...,\phi_{m,p}\) are restricted to be the same for all regimes.
specifies linear constraints imposed to each regime's autoregressive parameters separately.
a list of size \((pxq_{m})\) constraint matrices \(C_{m}\) of full column rank satisfying \(\phi_{m}\)\(=\)\(C_{m}\psi_{m}\) for all \(m=1,...,M\), where \(\phi_{m}\)\(=(\phi_{m,1},...,\phi_{m,p})\) and \(\psi_{m}\)\(=(\psi_{m,1},...,\psi_{m,q_{m}})\).
a size \((pxq)\) constraint matrix \(C\) of full column rank satisfying \(\phi\)\(=\)\(C\psi\), where \(\phi\)\(=(\phi_{1},...,\phi_{p})\) and \(\psi\)\(=\psi_{1},...,\psi_{q}\).
The symbol \(\phi\) denotes an AR coefficient. Note that regardless of any constraints, the autoregressive order
is always p
for all regimes.
Ignore or set to NULL
if applying linear constraints is not desired.
regimes with degrees of freedom parameter value larger than this will be turned into GMAR type.
params12 <- c(2, 0.9, 0.1, 0.8, 0.5, 0.5, 0.4, 12, 300)
stmarpars_to_gstmar(p=1, M=2, params=params12, model="StMAR", maxdf=100)
Run the code above in your browser using DataLab