# NOT RUN {
##- required packages
require(uavRst)
require(link2GI)
##- project folder
projRootDir<-tempdir()
##-create subfolders pls notice the pathes are exported as global variables
paths<-link2GI::initProj(projRootDir = projRootDir,
projFolders = c("data/","data/ref/","output/","run/","las/"),
global = TRUE,
path_prefix = "path_")
setwd(path_run)
unlink(paste0(path_run,"*"), force = TRUE)
##- get the tutorial data
utils::download.file("https://github.com/gisma/gismaData/raw/master/uavRst/data/ffs.zip",
paste0(path_run,"ffs.zip"))
unzip(zipfile = paste0(path_run,"ffs.zip"), exdir = ".")
##- assign tutorial data
imageFile <- paste0(path_run,"predict.tif")
load(paste0(path_run,"tutorialbandNames.RData"))
tutorialModel<-readRDS(file = paste0(path_run,"tutorialmodel.rds"))
##- start the prediction taking the non optimized model
##- please note the output is saved in the subdirectory path_output
predict_rgb(imageFiles=imageFile,
model = tutorialModel[[1]],
bandNames = bandNames)
##- visualise the classification
raster::plot(raster::raster(paste0(path_output,"classified_predict.tif")))
##+
# }
Run the code above in your browser using DataLab