Learn R Programming

ufs (version 0.5.12)

scaleDiagnosis: scaleDiagnosis

Description

scaleDiagnosis provides a number of diagnostics for a scale (an aggregative measure consisting of several items).

Usage

scaleDiagnosis(
  data = NULL,
  items = NULL,
  plotSize = 180,
  sizeMultiplier = 1,
  axisLabels = "none",
  scaleReliability.ci = FALSE,
  conf.level = 0.95,
  normalHist = TRUE,
  poly = TRUE,
  digits = 3,
  headingLevel = 3,
  scaleName = NULL,
  ...
)

# S3 method for scaleDiagnosis print(x, digits = x$digits, ...)

scaleDiagnosis_partial( x, headingLevel = x$input$headingLevel, quiet = TRUE, echoPartial = FALSE, partialFile = NULL, ... )

# S3 method for scaleDiagnosis knit_print( x, headingLevel = x$headingLevel, quiet = TRUE, echoPartial = FALSE, partialFile = NULL, ... )

Value

An object with the input and several output variables. Most notably:

scaleReliability

The results of scaleReliability.

pca

A Principal Components Analysis

fa

A Factor Analysis

describe

Decriptive statistics about the items

scatterMatrix

A scattermatrix with histograms on the diagonal and correlation coefficients in the upper right half.

Arguments

data

A dataframe containing the items in the scale. All variables in this dataframe will be used if items is NULL.

items

If not NULL, this should be a character vector with the names of the variables in the dataframe that represent items in the scale.

plotSize

Size of the final plot in millimeters.

sizeMultiplier

Allows more flexible control over the size of the plot elements

axisLabels

Passed to ggpairs function to set axisLabels.

scaleReliability.ci

TRUE or FALSE: whether to compute confidence intervals for Cronbach's Alpha and Omega (uses bootstrapping function in MBESS, takes a while).

conf.level

Confidence of confidence intervals for reliability estimates (if requested with scaleReliability.ci).

normalHist

Whether to use the default ggpairs histogram on the diagonal of the scattermatrix, or whether to use the normalHist() version.

poly

Whether to also request the estimates based on the polychoric correlation matrix when calling scaleStructure().

digits

The number of digits to pass to the print method for the descriptives dataframe.

headingLevel

The level of the heading (number of hash characters to insert before the heading, to be rendered as headings of that level in Markdown).

scaleName

Optionally, a name for the scale to print as heading for the results.

...

Additional arguments for scaleDiagnosis() are passed on to scatterMatrix(), and additional arguments for the print method are passed to the default print method.

x

The object to print.

quiet

Whether to be chatty (FALSE) or quiet (TRUE).

echoPartial

Whether to show the code in the partial (TRUE) or hide it (FALSE).

partialFile

The file with the Rmd partial (if you want to overwrite the default).

Author

Gjalt-Jorn Peters

Maintainer: Gjalt-Jorn Peters gjalt-jorn@userfriendlyscience.com

Details

Function to generate an object with several useful statistics and a plot to assess how the elements (usually items) in a scale relate to each other, such as Cronbach's Alpha, omega, the Greatest Lower Bound, a factor analysis, and a correlation matrix.

Examples

Run this code

### Note: the 'not run' is simply because running takes a lot of time,
###       but these examples are all safe to run!
if (FALSE) {
### This will prompt the user to select an SPSS file
scaleDiagnosis();

### Generate a datafile to use
exampleData <- data.frame(item1=rnorm(100));
exampleData$item2 <- exampleData$item1+rnorm(100);
exampleData$item3 <- exampleData$item1+rnorm(100);
exampleData$item4 <- exampleData$item2+rnorm(100);
exampleData$item5 <- exampleData$item2+rnorm(100);

### Use a selection of two variables
scaleDiagnosis(data=exampleData, items=c('item2', 'item4'));

### Use all items
scaleDiagnosis(data=exampleData);
}

Run the code above in your browser using DataLab