Learn R Programming

umx (version 1.9.1)

umxFitIndices: Get additional fit-indices for a model with umxFitIndices

Description

A list of fit indices. Originated in this thread: http://openmx.ssri.psu.edu/thread/765 note: This is not a full-fat fit reporter. It is not robust across multi-group designs, definition variables. It is primarily designed to add less-often reported fit indices for RAM models where reviewer 2 wants something other than CFA/TLI/RMSEA :-).

Usage

umxFitIndices(model, refModels = mxRefModels(model, run = TRUE))

Arguments

model

The mxModel for which you want fit indices.

refModels

Independence and saturated models. default mxRefModels(model, run = TRUE)

Value

Table of fit statistics

Details

Fit information reported includes: N, deviance, N.parms, Chi, df, p.Chi, Chi.df, AICchi, AICdev, BCCchi, BCCdev, BICchi, BICdev, CAICchi, CAICdev, RMSEA, SRMR, RMR, SMAR, MAR, SMAR.nodiag, MAR.nodiag, GFI, AGFI, PGFI, NFI, RFI, IFI, NNFI.TLI, CFI, PRATIO, PNFI, PCFI, NCP, ECVIchi, ECVIdev, MECVIchi, MECVIdev, MFI, GH

Want more? File a report at github

References

-

See Also

Other Reporting functions: RMSEA.MxModel, RMSEA.summary.mxmodel, RMSEA, extractAIC.MxModel, loadings, plot.MxModel, residuals.MxModel, umxCI_boot, umxCI, umxCompare, umxConfint, umxExpCov, umxExpMeans, umxPlotACEcov, umxPlotACEv, umxPlotACE, umxPlotCP, umxPlotGxE, umxPlotIP, umxSummary.MxModel, umxSummaryACEv, umxSummaryACE, umx_drop_ok, umx_standardize_RAM

Examples

Run this code
# NOT RUN {
require(umx)
data(demoOneFactor)
latents  = c("G")
manifests = names(demoOneFactor)
m1 <- umxRAM("One Factor",
	data = mxData(cov(demoOneFactor), type = "cov", numObs = 500),
	umxPath(latents, to = manifests),
	umxPath(var = manifests),
	umxPath(var = latents, fixedAt = 1)
)
umxFitIndices(m1)
# And with raw data
m1 <- umxRAM("m1", data = demoOneFactor,
	umxPath(latents, to = manifests),
	umxPath(v.m. = manifests),
	umxPath(v1m0 = latents)
)
umxFitIndices(m1)
umxAPA(umxFitIndices(m1), digits = 3)
# }

Run the code above in your browser using DataLab