Learn R Programming

umx (version 4.20.0)

umxDoCp: Make a direction of causation model based on umxPath statements

Description

Makes a direction of causation model with umxPath() statements

Usage

umxDoCp(
  var1Indicators,
  var2Indicators,
  mzData = NULL,
  dzData = NULL,
  sep = "_T",
  causal = TRUE,
  name = "DoC",
  autoRun = getOption("umx_auto_run"),
  intervals = FALSE,
  tryHard = c("no", "yes", "ordinal", "search"),
  optimizer = NULL
)

Value

  • [A direction of causation model with umxPath() statements.

Arguments

var1Indicators

The indicators of trait 1

var2Indicators

The indicators of trait 2

mzData

The MZ twin dataframe

dzData

The DZ twin dataframe

sep

(Default "_T")

causal

(Default TRUE)

name

= "DoC"

autoRun

Default: getOption("umx_auto_run")_

intervals

Whether to run intervals (Default FALSE)

tryHard

Default "no" (valid = "yes", "ordinal", "search")

optimizer

Whether to set this for this run (Default no))

Details

See also umxDoC()

See Also

  • umxDoC()

Other Twin Modeling Functions: power.ACE.test(), umxACEcov(), umxACEv(), umxACE(), umxCP(), umxDiffMZ(), umxDiscTwin(), umxDoC(), umxGxE_window(), umxGxEbiv(), umxGxE(), umxIP(), umxMRDoC(), umxReduceACE(), umxReduceGxE(), umxReduce(), umxRotate.MxModelCP(), umxSexLim(), umxSimplex(), umxSummarizeTwinData(), umxSummaryACEv(), umxSummaryACE(), umxSummaryDoC(), umxSummaryGxEbiv(), umxSummarySexLim(), umxSummarySimplex(), umxTwinMaker(), umx

Examples

Run this code
if (FALSE) {
# ================
# = 1. Load Data =
# ================
data(docData)
var1 = paste0("varA", 1:3)
var2 = paste0("varB", 1:3)
tmp = umx_scale_wide_twin_data(varsToScale= c(var1, var2), sep= "_T", data= docData)
mzData = subset(docData, zygosity %in% c("MZFF", "MZMM"))
dzData = subset(docData, zygosity %in% c("DZFF", "DZMM"))
m1 = umxDoCp(var1, var2, mzData= mzData, dzData= dzData, sep = "_T", causal= TRUE)

}

Run the code above in your browser using DataLab