Learn R Programming

umx (version 4.20.0)

umxSummaryACEcov: Present results of a twin ACE-model with covariates in table and graphical forms.

Description

Summarize a Cholesky model with random-effects covariates, as returned by umxACEcov()

Usage

umxSummaryACEcov(
  model,
  digits = 2,
  showRg = FALSE,
  std = TRUE,
  comparison = NULL,
  CIs = TRUE,
  zero.print = ".",
  report = c("markdown", "html"),
  file = getOption("umx_auto_plot"),
  returnStd = FALSE,
  extended = FALSE,
  ...
)

Value

  • optional mxModel()

Arguments

model

A umxACEcov() model to summarize

digits

Round to how many digits (default = 2)

showRg

= Whether to show the genetic correlations (FALSE)

std

= Whether to show the standardized model (TRUE)

comparison

You can run mxCompare on a comparison model (NULL)

CIs

Whether to show Confidence intervals if they exist (TRUE)

zero.print

How to show zeros (".")

report

If "html", then open an html table of the results.

file

The name of the dot file to write: NA = none; "name" = use the name of the model

returnStd

Whether to return the standardized form of the model (default = FALSE)

extended

How much to report (FALSE)

...

Other parameters to control model summary

References

See Also

  • umxACEcov()

Other Summary functions: umxSummary.MxModel(), umxSummaryCP(), umxSummaryGxE(), umxSummaryIP(), umxSummaryMRDoC()

Examples

Run this code
if (FALSE) {
require(umx)
data(twinData)
mzData = subset(twinData, zygosity == "MZFF")
dzData = subset(twinData, zygosity == "DZFF")
m1 = umxACEcov(selDVs = c("bmi", "wt"), selCovs = "ht", dzData = dzData, mzData = mzData, sep="")
umxSummaryACEcov(m1, file = NA)
umxSummaryACEcov(m1, file = "name", std = TRUE)
stdFit = umxSummary(m1, returnStd = TRUE)
}

Run the code above in your browser using DataLab