
Estimate the joint size-shape-orientation distribution of spheroids
em.spheroids(P, F, maxIt, nCores = getOption("par.unfoldr", 2L))
coefficient array
input histogram
maximum number of EM iterations
number of cpu cores to be used
trivariate histogram
Given an array of coefficients P
, see coefficientMatrixSpheroids
and an input histogram
F
of measured planar characteristics of section profiles, the function estimates the spatial joint
size-shape-orientation distribution of the corresponding spheroids in 3D by a discretized version of the
Expectation Maximization (EM) algorithm. A number of cpu cores can be set by the option 'par.unfoldr
'
for parallel computations. The function is also internally called by unfold
in case of spheroids.
Bene
# NOT RUN {
## Comment: Trivariate unfolding of spheroid distribution
## set number of cpu cores (optional)
options(par.unfoldr=2L)
## Intensity: mean number of spheroids per unit volume
lam <- 1000
## simulation parameters
theta <- list("size"=list("meanlog"=-2.5,"sdlog"=0.5),
"shape"=list(0.5),"orientation"=list("kappa"=2))
## simualtion
set.seed(1234)
S <- simPoissonSystem(theta,lam,size="rlnorm",
orientation="rbetaiso",box=list(c(0,5)),type="prolate",pl=1)
## unfolding
sp <- verticalSection(S,2.5)
ret <- unfold(sp,c(7,6,5),kap=1.25)
cat("Intensities: ", sum(ret$N_V)/25, "vs.",lam,"\n")
# }
Run the code above in your browser using DataLab