Learn R Programming

uniftest (version 1.1)

quesenberry.unif.test: Quesenberry--Miller test for uniformity

Description

Performs Quesenberry--Miller test for the hypothesis of uniformity, see Quesenberry and Miller (1977).

Usage

quesenberry.unif.test(x, nrepl=2000)

Arguments

x
a numeric vector of data values.
nrepl
the number of replications in Monte Carlo simulation.

Value

  • A list with class "htest" containing the following components:
  • statisticthe value of the Quesenberry--Miller statistic.
  • p.valuethe p-value for the test.
  • methodthe character string "Quesenberry--Miller test for uniformity".
  • data.namea character string giving the name(s) of the data.

Details

The Quesenberry--Miller test for uniformity is based on the following statistic: $$B_n = \sum_{i=1}^{n+1}{\left( X_{(i)} - X_{(i-1)} \right)^2} + \sum_{i=1}^{n}{\left( X_{(i)} - X_{(i-1)} \right)\left( X_{(i+1)} - X_{(i)} \right)},$$ where $X_{(0)}=0$, $X_{(n+1)}=1$. The p-value is computed by Monte Carlo simulation.

References

Quesenberry, C.P. and Miller F.L. (1977): Power studies of some tests for uniformity. --- J. Stat. Comput. Simul., vol. 5, pp. 169--191.

Examples

Run this code
quesenberry.unif.test(runif(100,0,1))
quesenberry.unif.test(runif(100,0,1.05))

Run the code above in your browser using DataLab