Learn R Programming

unmarked (version 1.5.0)

unmarkedModSel-class: unmarkedModSel class and methods

Description

The unmarkedModSel class and associated methods

Arguments

Slots

Full

data.frame with formula, estimates, standard errors and model selection information. Converge is optim convergence code. CondNum is model condition number. n is the number of sites. delta is delta AIC. cumltvWt is cumulative AIC weight. Rsq is Nagelkerke's (1991) R-squared index, which is only returned when the nullmod argument is specified.

Names

matrix referencing column names of estimates (row 1) and standard errors (row 2).

Methods

show

Print the AIC model selection table

coef

Data frame of coefficients from all models in model selection table

SE

Data frame of coefficient SEs from all models in model selection table

See Also

modSel

Examples

Run this code
data(linetran)
(dbreaksLine <- c(0, 5, 10, 15, 20)) 
lengths <- linetran$Length * 1000

ltUMF <- with(linetran, {
	unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4), 
	siteCovs = data.frame(Length, area, habitat), dist.breaks = dbreaksLine,
	tlength = lengths, survey = "line", unitsIn = "m")
	})

fm1 <- distsamp(~ 1 ~1, ltUMF)
fm2 <- distsamp(~ area ~1, ltUMF)
fm3 <- distsamp( ~ 1 ~area, ltUMF)

fl <- fitList(Null=fm1, A.=fm2, .A=fm3)
fl

ms <- modSel(fl, nullmod="Null")
ms

coef(ms)                            # Estimates only
SE(ms)                              # Standard errors only
(toExport <- as(ms, "data.frame"))  # Everything

Run the code above in your browser using DataLab