Learn R Programming

untb (version 1.7-7-1)

vallade: Various functions from Vallade and Houchmandzadeh

Description

Various functions from Vallade and Houchmandzadeh (2003), dealing with analytical solutions of a neutral model of biodiversity

Usage

vallade.eqn5(JM, theta, k)
vallade.eqn7(JM, theta)
vallade.eqn12(J, omega, m, n)
vallade.eqn14(J, theta, m, n)
vallade.eqn16(J, theta, mu)
vallade.eqn17(mu, theta, omega, give=FALSE)

Arguments

J,JM

Size of the community and metacommunity respectively

theta

Biodiversity number \(\theta=(J_M-1)\nu/(1-\nu)\) as discussed in equation 6

k,n

Abundance

omega

Relative abundance \(\omega=k/J_M\)

m

Immigration probability

mu

Scaled immigration probability \(\mu=(J-1)m/(1-m)\)

give

In function vallade.eqn17(), Boolean with default FALSE meaning to return the numerical value of the integral and TRUE meaning to return the entire output of integrate() including the error estimates

Author

Robin K. S. Hankin

Details

Notation follows Vallade and Houchmandzadeh (2003) exactly.

References

M. Vallade and B. Houchmandzadeh 2003. “Analytical Solution of a Neutral Model of Biodiversity”, Physical Review E, volume 68. doi: 10.1103/PhysRevE.68.061902

Examples

Run this code
# A nice check:
JM <- 100
k <- 1:JM
sum(k*vallade.eqn5(JM,theta=5,k))  # should be JM=100 exactly.



# Now, a replication of Figure 3:
  omega <- seq(from=0.01, to=0.99,len=100)
  f <- function(omega,mu){
    vallade.eqn17(mu,theta=5, omega=omega)
  }
  plot(omega,
  omega*5,type="n",xlim=c(0,1),ylim=c(0,5),
        xlab=expression(omega),
        ylab=expression(omega*g[C](omega)),
        main="Figure 3 of Vallade and Houchmandzadeh")
  points(omega,omega*sapply(omega,f,mu=0.5),type="l")
  points(omega,omega*sapply(omega,f,mu=1),type="l")
  points(omega,omega*sapply(omega,f,mu=2),type="l")
  points(omega,omega*sapply(omega,f,mu=4),type="l")
  points(omega,omega*sapply(omega,f,mu=8),type="l")
  points(omega,omega*sapply(omega,f,mu=16),type="l")
  points(omega,omega*sapply(omega,f,mu=Inf),type="l")




# Now a discrete version of Figure 3 using equation 14:
J <- 100
omega <- (1:J)/J

f <- function(n,mu){
   m <- mu/(J-1+mu)
   vallade.eqn14(J=J, theta=5, m=m, n=n)
 }
plot(omega,omega*0.03,type="n",main="Discrete version of Figure 3 using
   eqn 14")
points(omega,omega*sapply(1:J,f,mu=16))
points(omega,omega*sapply(1:J,f,mu=8))
points(omega,omega*sapply(1:J,f,mu=4))
points(omega,omega*sapply(1:J,f,mu=2))
points(omega,omega*sapply(1:J,f,mu=1))
points(omega,omega*sapply(1:J,f,mu=0.5))

Run the code above in your browser using DataLab