softmax: Softmax and inverse-softmax functions
Description
softmax returns the value of the softmax function.
softmaxinv returns the value of the inverse-softmax function.
Usage
softmax(eta, lambda = 1, gradient = FALSE, hessian = FALSE)softmaxinv(p, lambda = 1, gradient = FALSE, hessian = FALSE)
Arguments
lambda
Tuning parameter (a single positive value)
gradient
Logical; if TRUE the output will include a 'gradient' attribute
hessian
Logical; if TRUE the output will include a 'hessian' attribute
p
A probability vector (i.e., numeric vector of non-negative values that sum to one)
Value
Value of the softmax function
Details
The softmax function is a bijective function that maps a real vector with length m-1 to a probability vector
with length m with all non-zero probabilities. The softmax function is useful in a wide range of probability
and statistical applications. The present functions define the softmax function and its inverse, both with a tuning
parameter.
Examples
Run this code# NOT RUN {
softmax(5:7)
softmaxinv(softmax(5:7))
# }
Run the code above in your browser using DataLab