Learn R Programming

utiml (version 0.1.4)

predict.MBRmodel: Predict Method for Meta-BR/2BR

Description

This function predicts values based upon a model trained by mbr.

Usage

# S3 method for MBRmodel
predict(object, newdata,
  probability = getOption("utiml.use.probs", TRUE), ...,
  cores = getOption("utiml.cores", 1), seed = getOption("utiml.seed", NA))

Arguments

object

Object of class 'MBRmodel'.

newdata

An object containing the new input data. This must be a matrix, data.frame or a mldr object.

probability

Logical indicating whether class probabilities should be returned. (Default: getOption("utiml.use.probs", TRUE))

...

Others arguments passed to the base algorithm prediction for all subproblems.

cores

The number of cores to parallelize the training. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is run in parallel. (Default: options("utiml.seed", NA))

Value

An object of type mlresult, based on the parameter probability.

See Also

Meta-BR (MBR or 2BR)

Examples

Run this code
# NOT RUN {
# Predict SVM scores
model <- mbr(toyml)
pred <- predict(model, toyml)

# Predict SVM bipartitions
pred <- predict(model, toyml, probability = FALSE)

# Passing a specif parameter for SVM predict algorithm
pred <- predict(model, toyml, na.action = na.fail)
# }

Run the code above in your browser using DataLab