Learn R Programming

utiml (version 0.1.4)

rcut_threshold: Rank Cut (RCut) threshold method

Description

The Rank Cut (RCut) method is an instance-wise strategy, which outputs the k labels with the highest scores for each instance at the deployment.

Usage

rcut_threshold(prediction, k, probability = FALSE)

# S3 method for default rcut_threshold(prediction, k, probability = FALSE)

# S3 method for mlresult rcut_threshold(prediction, k, probability = FALSE)

Arguments

prediction

A matrix or mlresult.

k

The number of elements that will be positive.

probability

A logical value. If TRUE the predicted values are the score between 0 and 1, otherwise the values are bipartition 0 or 1. (Default: FALSE)

Value

A mlresult object.

Methods (by class)

  • default: Rank Cut (RCut) threshold method for matrix

  • mlresult: Rank Cut (RCut) threshold method for mlresult

References

Al-Otaibi, R., Flach, P., & Kull, M. (2014). Multi-label Classification: A Comparative Study on Threshold Selection Methods. In First International Workshop on Learning over Multiple Contexts (LMCE) at ECML-PKDD 2014.

See Also

Other threshold: fixed_threshold, lcard_threshold, mcut_threshold, pcut_threshold, scut_threshold, subset_correction

Examples

Run this code
# NOT RUN {
prediction <- matrix(runif(16), ncol = 4)
rcut_threshold(prediction, 2)
# }

Run the code above in your browser using DataLab