Learn R Programming

utiml (version 0.1.6)

lcard_threshold: Threshold based on cardinality

Description

Find and apply the best threshold based on cardinality of training set. The threshold is choice based on how much the average observed label cardinality is close to the average predicted label cardinality.

Usage

lcard_threshold(prediction, cardinality, probability = FALSE)

# S3 method for default lcard_threshold(prediction, cardinality, probability = FALSE)

# S3 method for mlresult lcard_threshold(prediction, cardinality, probability = FALSE)

Arguments

prediction

A matrix or mlresult.

cardinality

A real value of training dataset label cardinality, used to define the threshold value.

probability

A logical value. If TRUE the predicted values are the score between 0 and 1, otherwise the values are bipartition 0 or 1. (Default: FALSE)

Value

A mlresult object.

Methods (by class)

  • default: Cardinality Threshold for matrix or data.frame

  • mlresult: Cardinality Threshold for mlresult

References

Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2011). Classifier chains for multi-label classification. Machine Learning, 85(3), 333-359.

See Also

Other threshold: fixed_threshold(), mcut_threshold(), pcut_threshold(), rcut_threshold(), scut_threshold(), subset_correction()

Examples

Run this code
# NOT RUN {
prediction <- matrix(runif(16), ncol = 4)
lcard_threshold(prediction, 2.1)
# }

Run the code above in your browser using DataLab