Learn R Programming

utiml (version 0.1.6)

mcut_threshold: Maximum Cut Thresholding (MCut)

Description

The Maximum Cut (MCut) automatically determines a threshold for each instance that selects a subset of labels with higher scores than others. This leads to the selection of the middle of the interval defined by these two scores as the threshold.

Usage

mcut_threshold(prediction, probability = FALSE)

# S3 method for default mcut_threshold(prediction, probability = FALSE)

# S3 method for mlresult mcut_threshold(prediction, probability = FALSE)

Arguments

prediction

A matrix or mlresult.

probability

A logical value. If TRUE the predicted values are the score between 0 and 1, otherwise the values are bipartition 0 or 1. (Default: FALSE)

Value

A mlresult object.

Methods (by class)

  • default: Maximum Cut Thresholding (MCut) method for matrix

  • mlresult: Maximum Cut Thresholding (MCut) for mlresult

References

Largeron, C., Moulin, C., & Gery, M. (2012). MCut: A Thresholding Strategy for Multi-label Classification. In 11th International Symposium, IDA 2012 (pp. 172-183).

See Also

Other threshold: fixed_threshold(), lcard_threshold(), pcut_threshold(), rcut_threshold(), scut_threshold(), subset_correction()

Examples

Run this code
# NOT RUN {
prediction <- matrix(runif(16), ncol = 4)
mcut_threshold(prediction)
# }

Run the code above in your browser using DataLab