Create a RPC model for multilabel classification.
rpc(
mdata,
base.algorithm = getOption("utiml.base.algorithm", "SVM"),
...,
cores = getOption("utiml.cores", 1),
seed = getOption("utiml.seed", NA)
)
A mldr dataset used to train the binary models.
A string with the name of the base algorithm. (Default:
options("utiml.base.algorithm", "SVM")
)
Others arguments passed to the base algorithm for all subproblems
The number of cores to parallelize the training. Values higher
than 1 require the parallel package. (Default:
options("utiml.cores", 1)
)
An optional integer used to set the seed. This is useful when
the method is run in parallel. (Default: options("utiml.seed", NA)
)
An object of class RPCmodel
containing the set of fitted
models, including:
A vector with the label names.
A list of the generated models, named by the label names.
RPC is a simple transformation method that uses pairwise classification to predict multi-label data. This is based on the one-versus-one approach to build a specific model for each label combination.
Hullermeier, E., Furnkranz, J., Cheng, W., & Brinker, K. (2008). Label ranking by learning pairwise preferences. Artificial Intelligence, 172(16-17), 1897-1916.
Other Transformation methods:
brplus()
,
br()
,
cc()
,
clr()
,
dbr()
,
ebr()
,
ecc()
,
eps()
,
esl()
,
homer()
,
lift()
,
lp()
,
mbr()
,
ns()
,
ppt()
,
prudent()
,
ps()
,
rakel()
,
rdbr()
Other Pairwise methods:
clr()
# NOT RUN {
model <- rpc(toyml, "RANDOM")
pred <- predict(model, toyml)
# }
Run the code above in your browser using DataLab