Create a RPC model for multilabel classification.
rpc(
mdata,
base.algorithm = getOption("utiml.base.algorithm", "SVM"),
...,
cores = getOption("utiml.cores", 1),
seed = getOption("utiml.seed", NA)
)A mldr dataset used to train the binary models.
A string with the name of the base algorithm. (Default:
options("utiml.base.algorithm", "SVM"))
Others arguments passed to the base algorithm for all subproblems
The number of cores to parallelize the training. Values higher
than 1 require the parallel package. (Default:
options("utiml.cores", 1))
An optional integer used to set the seed. This is useful when
the method is run in parallel. (Default: options("utiml.seed", NA))
An object of class RPCmodel containing the set of fitted
models, including:
A vector with the label names.
A list of the generated models, named by the label names.
RPC is a simple transformation method that uses pairwise classification to predict multi-label data. This is based on the one-versus-one approach to build a specific model for each label combination.
Hullermeier, E., Furnkranz, J., Cheng, W., & Brinker, K. (2008). Label ranking by learning pairwise preferences. Artificial Intelligence, 172(16-17), 1897-1916.
Other Transformation methods:
brplus(),
br(),
cc(),
clr(),
dbr(),
ebr(),
ecc(),
eps(),
esl(),
homer(),
lift(),
lp(),
mbr(),
ns(),
ppt(),
prudent(),
ps(),
rakel(),
rdbr()
Other Pairwise methods:
clr()
# NOT RUN {
model <- rpc(toyml, "RANDOM")
pred <- predict(model, toyml)
# }
Run the code above in your browser using DataLab