Learn R Programming

varian (version 0.2.2)

simulate_gvm: Simulate a Gamma Variability Model

Description

This function facilitates simulation of a Gamma Variability Model and allows the number of units and repeated measures to be varied as well as the degree of variability.

Usage

simulate_gvm(n, k, mu, mu.sigma, sigma.shape, sigma.rate, seed = 5346)

Arguments

n
The number of repeated measures on each unit
k
The number of units
mu
The grand mean of the variable
mu.sigma
The standard deviation of the random mean of the variable
sigma.shape
the shape (alpha) parameter of the Gamma distribution controlling the residual variability
sigma.rate
the rate (beta) parameter of the Gamma distribution controlling the residual variability
seed
the random seed, used to make simulations reproductible. Defaults to 5346 (arbitrarily).

Value

a list of the data, IDs, and the parameters used for the simulation

Examples

Run this code
raw.sim <- simulate_gvm(12, 140, 0, 1, 4, .1, 94367)
sim.data <- with(raw.sim, {
  set.seed(265393)
  x2 <- MASS::mvrnorm(k, c(0, 0), matrix(c(1, .3, .3, 1), 2))
  y2 <- rnorm(k, cbind(Int = 1, x2) %*% matrix(c(3, .5, .7)) + sigma, sd = 3)
  data.frame(
    y = Data$y,
    y2 = y2[Data$ID2],
    x1 = x2[Data$ID2, 1],
    x2 = x2[Data$ID2, 2],
    ID = Data$ID2)
})

Run the code above in your browser using DataLab