Learn R Programming

vars (version 1.1-9)

BQ: Estimates a Blanchard-Quah type SVAR

Description

This function estimates a SVAR of type Blanchard and Quah. It returns a list object with class attribute svarest.

Usage

BQ(x)

Arguments

x
Object of class varest; generated by VAR().

Value

  • A list of class svarest with the following elements is returned:
  • AAn identity matrix.
  • AseNULL.
  • BThe estimated contemporaneous impact matrix.
  • BseNULL.
  • LRIMThe estimated long-run impact matrix.
  • Sigma.UThe variance-covariance matrix of the reduced form residuals times 100.
  • LRNULL.
  • optNULL.
  • startNULL.
  • typeCharacter: Blanchard-Quah.
  • varThe varest object x.
  • callThe call to BQ().

encoding

latin1

concept

  • SVAR
  • Structural VAR
  • Structural Vector Autoregressive
  • Blanchard-Quah

Details

For a Blanchard-Quah model the matrix $A$ is set to be an identity matrix with dimension $K$. The matrix of the long-run effects is assumed to be lower-triangular and is defined as: $$(I_K - A_1 - \cdots - A_p)^{-1}B$$ Hence, the residual of the second equation cannot exert a long-run influence on the first variable and likewise the third residual cannot impact the first and second variable. The estimation of the Blanchard-Quah model is achieved by a Choleski decomposition of: $$(I_K - \hat{A}_1 - \cdots - \hat{A}_p)^{-1}\hat{\Sigma}_u (I_K - \hat{A}_1' - \cdots - \hat{A}_p')^{-1}$$ The matrices $\hat{A}_i$ for $i = 1, \ldots, p$ assign the reduced form estimates. The long-run impact matrix is the lower-triangular Choleski decomposition of the above matrix and the contemporaneous impact matrix is equal to: $$(I_K - A_1 - \cdots - A_p)Q$$ where $Q$ assigns the lower-trinagular Choleski decomposition.

References

Blanchard, O. and D. Quah (1989), The Dynamic Effects of Aggregate Demand and Supply Disturbances, The American Economic Review, 79(4), 655-673. Hamilton, J. (1994), Time Series Analysis, Princeton University Press, Princeton. L�tkepohl, H. (2006), New Introduction to Multiple Time Series Analysis, Springer, New York.

See Also

SVAR, SVAR2, VAR

Examples

Run this code
data(Canada)
var.2c <- VAR(Canada, p = 2, type = "const")
BQ(var.2c)

Run the code above in your browser using DataLab