SVEC(x, LR = NULL, SR = NULL, r = 1, start = NULL, max.iter = 100,
conv.crit = 1e-07, maxls = 1.0, lrtest = TRUE, boot = FALSE, runs = 100)
ca.jo
urca
.TRUE
, standard errors of the parameters
are computed by bootstrapping. Default is FALSE
.svecest
boot = TRUE
.boot = TRUE
.ca.jo
x
call
to SR
and free parameters as NA
entries. Restrictions on the long run impact matrix $\Xi B$ have
to be supplied likewise. The unknown parameters are estimated by
maximising the concentrated log-likelihood subject to the imposed
restrictions by utilising a scoring algorithm on:
$$\ln L_c(A, B) = - \frac{KT}{2}\ln(2\pi) + \frac{T}{2}\ln|A|^2 -
\frac{T}{2}\ln|B|^2 - \frac{T}{2}tr(A'B'^{-1}B^{-1}A\tilde{\Sigma}_u)$$
with $\tilde{\Sigma}_u$ signifies the reduced form
variance-covariance matrix and $A$ is set equal to the identity
matrix $I_K$.
If start
SVAR
, SVAR2
, irf
,
fevd
data(Canada)
vec.can <- ca.jo(Canada, K = 2, spec = "transitory")
summary(vec.can)
LR <- matrix(NA, nrow = 4, ncol = 4)
SR <- diag(NA, 4)
SR[2, 1] <- NA
SR[3, 1] <- NA
SR[4, 1] <- NA
SVEC(vec.can, r = 2, LR = LR, SR = SR, lrtest = TRUE)
Run the code above in your browser using DataLab