VARselect(y, lag.max = 10, type = c("const", "trend", "both", "none"),
season = NULL, exogen = NULL)
lag.max = 10
).lag.max
.type
argument to the corresponding value and/or
setting season
to the desired frequency (integer) and/or providing a
matrix object for exogen
, respectively. The default for type
is
const
and for season
and exogen
the default is
set to NULL
.
Based on the same sample size the following information criteria and
the final prediction error are computed:
$$AIC(n) = \ln \det(\tilde{\Sigma}_u(n)) + \frac{2}{T}n K^2 \quad,$$
$$HQ(n) = \ln \det(\tilde{\Sigma}_u(n)) + \frac{2 \ln(\ln(T))}{T}n K^2 \quad,$$
$$SC(n) = \ln \det(\tilde{\Sigma}_u(n)) + \frac{\ln(T)}{T}n K^2 \quad,$$
$$FPE(n) = \left ( \frac{T + n^*}{T - n^*} \right )^K
\det(\tilde{\Sigma}_u(n)) \quad ,$$
with $\tilde{\Sigma}_u (n) = T^{-1} \sum_{t=1}^T \bold{\hat{u}}_t
\bold{\hat{u}}_t'$ and $n^*$ is the total number of the
parameters in each equation and $n$ assigns the lag order.VAR
data(Canada)
VARselect(Canada, lag.max = 5, type="const")
Run the code above in your browser using DataLab