VARselect(y, lag.max = 10, type = c("const", "trend", "both", "none"),
season = NULL, exogen = NULL)lag.max = 10).lag.max.type argument to the corresponding value and/or
setting season to the desired frequency (integer) and/or providing a
matrix object for exogen, respectively. The default for type is
const and for season and exogen the default is
set to NULL.
Based on the same sample size the following information criteria and
the final prediction error are computed:
$$AIC(n) = \ln \det(\tilde{\Sigma}_u(n)) + \frac{2}{T}n K^2 \quad,$$
$$HQ(n) = \ln \det(\tilde{\Sigma}_u(n)) + \frac{2 \ln(\ln(T))}{T}n K^2 \quad,$$
$$SC(n) = \ln \det(\tilde{\Sigma}_u(n)) + \frac{\ln(T)}{T}n K^2 \quad,$$
$$FPE(n) = \left ( \frac{T + n^*}{T - n^*} \right )^K
\det(\tilde{\Sigma}_u(n)) \quad ,$$
with $\tilde{\Sigma}_u (n) = T^{-1} \sum_{t=1}^T \bold{\hat{u}}_t
\bold{\hat{u}}_t'$ and $n^*$ is the total number of the
parameters in each equation and $n$ assigns the lag order.VARdata(Canada)
VARselect(Canada, lag.max = 5, type="const")Run the code above in your browser using DataLab