varestvec2var## S3 method for class 'varest':
predict(object, ..., n.ahead = 10, ci = 0.95, dumvar = NULL)
## S3 method for class 'vec2var':
predict(object, ..., n.ahead = 10, ci = 0.95, dumvar = NULL)varestvec2varvec2varvarestdumvar argument in
exogen argument in
varprdobject.NULL.n.ahead forecasts are computed recursively for the
estimated VAR, beginning with $h = 1, 2, \ldots, n.ahead$:
$$\bold{y}_{T+1 | T} = A_1 \bold{y}_T + \ldots + A_p \bold{y}_{T+1-p} +
C D_{T+1}$$
The variance-covariance matrix of the forecast errors is a function of
$\Sigma_u$ and $\Phi_s$.VAR, vec2var, plot,
fanchartdata(Canada)
var.2c <- VAR(Canada, p = 2, type = "const")
predict(var.2c, n.ahead = 8, ci = 0.95)Run the code above in your browser using DataLab