roots: Eigenvalues of the companion coefficient matrix of a VAR(p)-process
Description
Returns a vector of the eigenvalues of the companion coefficient matrix.
Usage
roots(x, modulus = TRUE)
Arguments
x
An object of class varest, generated by
VAR().
modulus
Logical, set to TRUE for returning the modulus.
Value
A vector object with the eigen values of the companion matrix, or
their moduli (default).
encoding
latin1
Details
Any VAR(p)-process can be written in a first-order vector
autoregressive form: the companion form. A VAR(p)-process is stable,
if its reverse characteristic polynomial:
$$\det(I_K - A_1 z - \cdots - A_p z^p) \neq 0 \; \hbox{for} \; |z| \le 1
\; ,$$
has no roots in or on the complex circle. This is equivalent to the
condition that all eigenvalues of the companion matrix $A$ have
modulus less than 1. The function roots(), does compute the
eigen values of the companion matrix $A$ and returns by default
their moduli.
References
Hamilton, J. (1994), Time Series Analysis, Princeton
University Press, Princeton.
L�tkepohl, H. (2006), New Introduction to Multiple Time Series
Analysis, Springer, New York.