GSStab <- xtabs(count ~ sex + party, data=GSS)
# using the data in table form
mod.glm1 <- glm(Freq ~ sex + party, family = poisson, data = GSStab)
res <- residuals(mod.glm1)
std <- rstandard(mod.glm1)
# For mosaic.default(), need to re-shape residuals to conform to data
stdtab <- array(std, dim=dim(GSStab), dimnames=dimnames(GSStab))
mosaic(GSStab, gp=shading_Friendly, residuals=stdtab, residuals_type="Std
residuals",
labeling = labeling_residuals)
# Using externally calculated residuals with the glm() object
mosaic.glm(mod.glm1, residuals=std, labeling = labeling_residuals, shade=TRUE)
# Using residuals_type
mosaic.glm(mod.glm1, residuals_type="rstandard", labeling = labeling_residuals, shade=TRUE)
## Ordinal factors and structured associations
data(Mental)
xtabs(Freq ~ mental+ses, data=Mental)
long.labels <- list(set_varnames = c(mental="Mental Health Status", ses="Parent SES"))
# fit independence model
# Residual deviance: 47.418 on 15 degrees of freedom
indep <- glm(Freq ~ mental+ses,
family = poisson, data = Mental)
long.labels <- list(set_varnames = c(mental="Mental Health Status",
ses="Parent SES"))
mosaic(indep,residuals_type="rstandard", labeling_args = long.labels, labeling=labeling_residuals)
# or, show as a sieve diagram
mosaic(indep, labeling_args = long.labels, panel=sieve, gp=shading_Friendly)
# fit linear x linear (uniform) association. Use integer scores for rows/cols
Cscore <- as.numeric(Mental$ses)
Rscore <- as.numeric(Mental$mental)
linlin <- glm(Freq ~ mental + ses + Rscore:Cscore,
family = poisson, data = Mental)
mosaic(linlin,residuals_type="rstandard",
labeling_args = long.labels, labeling=labeling_residuals, suppress=1, gp=shading_Friendly,
main="Lin x Lin model")
## Goodman Row-Column association model fits even better (deviance 3.57, df 8)
if (require(gnm)) {
Mental$mental <- C(Mental$mental, treatment)
Mental$ses <- C(Mental$ses, treatment)
RC1model <- gnm(Freq ~ ses + mental + Mult(ses, mental),
family = poisson, data = Mental)
mosaic(RC1model,residuals_type="rstandard",
labeling_args = long.labels, labeling=labeling_residuals, suppress=1, gp=shading_Friendly,
main="RC1 model")
}
Run the code above in your browser using DataLab