tsallis
find Tsallis diversities with any scale or the corresponding evenness measures. Function tsallisaccum
finds these statistics with accumulating sites.tsallis(x, scales = seq(0, 2, 0.2), norm = FALSE, hill = FALSE)
tsallisaccum(x, scales = seq(0, 2, 0.2), permutations = 100, raw = FALSE, ...)
## S3 method for class 'tsallisaccum':
persp(x, theta = 220, phi = 15, col = heat.colors(100), zlim, ...)
TRUE
diversity values are normalized by their maximum (diversity value at equiprobability conditions).FALSE
then return summary statistics of permutations, and if TRUE then returns the individual permutations.theta
gives the azimuthal direction and phi
the colatitude.tsallis
and to graphical functions.tsallis
returns a data frame of selected indices. Function tsallisaccum
with argument raw = FALSE
returns a three-dimensional array, where the first dimension are the accumulated sites, second dimension are the diversity scales, and third dimension are the summary statistics mean
, stdev
, min
, max
, Qnt 0.025
and Qnt 0.975
. With argument raw = TRUE
the statistics on the third dimension are replaced with individual permutation results.diversity
).
If norm = TRUE
, tsallis
gives values normalized by the maximum:
$$H_q(max) = \frac{S^{1-q}-1}{1-q}$$
where $S$ is the number of species. As $q$ tends to 1, maximum is defined as $ln(S)$.
If hill = TRUE
, tsallis
gives Hill numbers (numbers equivalents, see Jost 2007):
$$D_q = (1-(q-1) H)^{1/(1-q)}$$
Details on plotting methods and accumulating values can be found on the help pages of the functions renyi
and renyiaccum
.renyi
and renyiaccum
. An object of class 'tsallisaccum' can be used with function rgl.renyiaccum
as well. See also settings for persp
.data(BCI)
i <- sample(nrow(BCI), 12)
x1 <- tsallis(BCI[i,])
x1
diversity(BCI[i,],"simpson") == x1[["2"]]
plot(x1)
x2 <- tsallis(BCI[i,],norm=TRUE)
x2
plot(x2)
mod1 <- tsallisaccum(BCI[i,])
plot(mod1, as.table=TRUE, col = c(1, 2, 2))
persp(mod1)
mod2 <- tsallisaccum(BCI[i,], norm=TRUE)
persp(mod2,theta=100,phi=30)
Run the code above in your browser using DataLab