eigenvals(x, ...)
## S3 method for class 'cca':
eigenvals(x, constrained = FALSE, ...)
## S3 method for class 'eigenvals':
summary(object, ...)
eigenvals
result object."eigenvals"
which is a vector of eigenvalues.cca
,
wcmdscale
, pcnm
, prcomp
,
princomp
, dudi
(of pca
and pco
(of
eigen
or svd
. Functions
prcomp
and princomp
contain square roots
of eigenvalues that all called standard deviations, but
eigenvals
function returns their squares. Function
svd
contains singular values, but function
eigenvals
returns their squares. For constrained ordination
methods cca
, rda
and
capscale
the function returns the both constrained and
unconstrained eigenvalues concatenated in one vector, but the partial
component will be ignored. However, with argument
constrained = TRUE
only constrained eigenvalues are returned. The summary
of eigenvals
result returns eigenvalues,
proportion explained and cumulative proportion explained. The result
object can have some negative eigenvalues (wcmdscale
,
capscale
, pcnm
) which correspond to
imaginary axes of Euclidean mapping of non-Euclidean distances
(Gower 1985). In these cases, the sum of absolute values of
eigenvalues is used in calculating the proportions explained, and
real axes (corresponding to positive eigenvalues) will only explain
a part of total variation (Mardia et al. 1979, Gower 1985).
Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Chapter 14 of Multivariate Analysis, London: Academic Press.
eigen
, svd
, prcomp
,
princomp
, cca
, rda
,
capscale
, wcmdscale
,
cca.object
.data(varespec)
data(varechem)
mod <- cca(varespec ~ Al + P + K, varechem)
ev <- eigenvals(mod)
ev
summary(ev)
Run the code above in your browser using DataLab