# generate the data
# generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))
# apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2
# generate Y ~ Normal (smooth, 1)
y <- smooth + stats::rnorm(n, 0, 1)
# set up a library for SuperLearner; note simple library for speed
library("SuperLearner")
learners <- c("SL.glm", "SL.mean")
# using Super Learner (with a small number of folds, for illustration only)
est_2 <- vimp_regression(Y = y, X = x, indx = 2, V = 2,
run_regression = TRUE, alpha = 0.05,
SL.library = learners, cvControl = list(V = 2))
est_1 <- vimp_regression(Y = y, X = x, indx = 1, V = 2,
run_regression = TRUE, alpha = 0.05,
SL.library = learners, cvControl = list(V = 2))
ests <- merge_vim(est_1, est_2)
Run the code above in your browser using DataLab