Learn R Programming

viper (version 1.6.0)

msviper: msVIPER

Description

This function performs MAster Regulator INference Analysis

Usage

msviper(ges, regulon, nullmodel = NULL, pleiotropy = FALSE, minsize = 25, adaptive.size = FALSE, ges.filter = TRUE, synergy = 0, level = 10, pleiotropyArgs = list(regulators = 0.05, shadow = 0.05, targets = 10, penalty = 20, method = "adaptive"), cores = 1, verbose = TRUE)

Arguments

ges
Vector containing the gene expression signature to analyze, or matrix with columns containing bootstraped signatures
regulon
Object of class regulon
nullmodel
Matrix of genes by permutations containing the NULL model signatures. A parametric approach equivalent to shuffle genes will be used if nullmodel is ommitted.
pleiotropy
Logical, whether correction for pleiotropic regulation should be performed
minsize
Number indicating the minimum allowed size for the regulons
adaptive.size
Logical, whether the weight (likelihood) should be used for computing the regulon size
ges.filter
Logical, whether the gene expression signature should be limited to the genes represented in the interactome
synergy
Number indicating the synergy computation mode: (0) for no synergy computation; (0-1) for establishing the p-value cutoff for individual TFs to be included in the synergy analysis; (>1) number of top TFs to be included in the synergy analysis
level
Integer, maximum level of combinatorial regulation
pleiotropyArgs
list of 5 numbers for the pleotropy correction indicating: regulators p-value threshold, pleiotropic interaction p-value threshold, minimum number of targets in the overlap between pleiotropic regulators, penalty for the pleiotropic interactions and the pleiotropy analysis method, either absolute or adaptive
cores
Integer indicating the number of cores to use (only 1 in Windows-based systems)
verbose
Logical, whether progression messages should be printed in the terminal

Value

A msviper object containing the following components:
signature
The gene expression signature
regulon
The final regulon object used
es
Enrichment analysis results including regulon size, normalized enrichment score and p-value
param
msviper parameters, including minsize, adaptive.size

See Also

viper

Examples

Run this code
data(bcellViper, package="bcellViper")
sig <- rowTtest(dset, "description", c("CB", "CC"), "N")$statistic
dnull <- ttestNull(dset, "description", c("CB", "CC"), "N", per=100) # Only 100 permutations to reduce computation time, but it is recommended to perform at least 1000 permutations
mra <- msviper(sig, regulon, dnull)
plot(mra, cex=.7)

Run the code above in your browser using DataLab