Learn R Programming

visdat (version 0.6.0)

vis_cor: Visualise correlations amongst variables in your data as a heatmap

Description

Visualise correlations amongst variables in your data as a heatmap

Usage

vis_cor(
  data,
  cor_method = "pearson",
  na_action = "pairwise.complete.obs",
  facet,
  ...
)

Value

ggplot2 object

Arguments

data

data.frame

cor_method

correlation method to use, from cor: "a character string indicating which correlation coefficient (or covariance) is to be computed. One of "pearson" (default), "kendall", or "spearman": can be abbreviated."

na_action

The method for computing covariances when there are missing values present. This can be "everything", "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs" (default). This option is taken from the cor function argument use.,

facet

bare unqouted variable to use for facetting

...

extra arguments you may want to pass to cor

Examples

Run this code
vis_cor(airquality)
vis_cor(airquality, facet = Month)
vis_cor(mtcars)
if (FALSE) {
# this will error
vis_cor(iris)
}

Run the code above in your browser using DataLab