powered by
Cut a hierarchical tree targeting k clusters
cut_clusters(clusters, k)
cluster labels
cluster results, produced by e.g. fastcluster::hclust()
fastcluster::hclust()
target number of clusters
dmat <- compute_dmat(iris, "euclidean", TRUE, c("Petal.Length", "Sepal.Length")) clusters <- compute_clusters(dmat, "complete") cluster_labels <- cut_clusters(clusters, 2) head(cluster_labels)
Run the code above in your browser using DataLab