Learn R Programming

volker (version 3.1.0)

effect_metrics_items_cor_items: Output correlation coefficients for multiple items

Description

The correlation is calculated using stats::cor.test.

Usage

effect_metrics_items_cor_items(
  data,
  cols,
  cross,
  method = "pearson",
  labels = TRUE,
  clean = TRUE,
  ...
)

Value

A volker table containing correlations.

If method = "pearson":

  • R-squared: Coefficient of determination.

  • n: Number of cases the calculation is based on.

  • Pearson's r: Correlation coefficient.

  • ci low / ci high: Lower and upper bounds of the 95% confidence interval.

  • df: Degrees of freedom.

  • t: t-statistic.

  • p: p-value for the statistical test, indicating whether the correlation differs from zero.

  • stars: Significance stars based on the p-value (*, **, ***).

If method = "spearman":

  • Spearman's rho is displayed instead of Pearson's r.

  • S-statistic is used instead of the t-statistic.

Arguments

data

A tibble containing item measures.

cols

Tidyselect item variables (e.g. starts_with...).

cross

Tidyselect item variables (e.g. starts_with...).

method

The output metrics, pearson = Pearson's R, spearman = Spearman's rho.

labels

If TRUE (default) extracts labels from the attributes, see codebook.

clean

Prepare data by data_clean.

...

Placeholder to allow calling the method with unused parameters from effect_metrics.

Examples

Run this code
library(volker)
data <- volker::chatgpt

effect_metrics_items_cor_items(
  data,
  starts_with("cg_adoption_adv"),
  starts_with("use"),
  metric = TRUE
)

Run the code above in your browser using DataLab