Learn R Programming

voxel (version 1.3.5)

anovagamVoxel: Computes voxelwise analysis of variance (ANOVA) tables for a Generalized Additive Model.

Description

This function computes analysis of variance tables for the fitted models after running a Generalized Additive Model (from mgcv::gam). The analysis will run in all voxels in the mask and will return the analysis of variance table for each voxel. Please check the mgcv::anova.gam documentation for further information about specific arguments used in anova.gam. Multi-model calls are disabled.

Usage

anovagamVoxel(image, mask, fourdOut = NULL, formula, subjData,
  dispersion = NULL, freq = FALSE, mc.preschedule = TRUE, ncores = 1,
  ...)

Arguments

image

Input image of type 'nifti' or vector of path(s) to images. If multiple paths, the script will call mergeNifti() and merge across time.

mask

Input mask of type 'nifti' or path to mask. Must be a binary mask

fourdOut

To be passed to mergeNifti, This is the path and file name without the suffix to save the fourd file. Default (NULL) means script won't write out 4D image.

formula

Must be a formula passed to gam()

subjData

Dataframe containing all the covariates used for the analysis

dispersion

To be passed to mgcv::anova.gam, Defaults to NULL. Dispersion Parameter, not normally used.

freq

To be passed to mgcv::anova.gam, Defaults to FALSE. Frequentist or Bayesian approximations for p-values

mc.preschedule

Argument to be passed to mclapply, whether or not to preschedule the jobs. More info in parallel::mclapply

ncores

Number of cores to use

...

Additional arguments passed to gam()

Value

Returns list of models fitted to each voxel over the masked images passed to function.

Examples

Run this code
# NOT RUN {
image <- oro.nifti::nifti(img = array(1:200, dim =c(2,2,2,25)))
mask <- oro.nifti::nifti(img = array(0:1, dim = c(2,2,2,1)))
set.seed(1)
covs <- data.frame(x = runif(25), y=runif(25))
fm1 <- "~ s(x) + y"
models <- anovagamVoxel(image=image, mask=mask,
              formula=fm1, subjData=covs, ncores = 1)
# }

Run the code above in your browser using DataLab