Learn R Programming

vsn (version 3.40.0)

sagmbSimulateData: Simulate data and assess vsn's parameter estimation

Description

Functions to validate and assess the performance of vsn through simulation of data.

Usage

sagmbSimulateData(n=8064, d=2, de=0, up=0.5, nrstrata=1, miss=0, log2scale=FALSE) sagmbAssess(h1, sim)

Arguments

n
Numeric. Number of probes (rows).
d
Numeric. Number of arrays (columns).
de
Numeric. Fraction of differentially expressed genes.
up
Numeric. Fraction of up-regulated genes among the differentially expressed genes.
nrstrata
Numeric. Number of probe strata.
miss
Numeric. Fraction of data points that is randomly sampled and set to NA.
log2scale
Logical. If TRUE, glog on base 2 is used, if FALSE, (the default), then base e.
h1
Matrix. Calibrated and transformed data, according, e.g., to vsn
sim
List. The output of a previous call to sagmbSimulateData, see Value

Value

For sagmbSimulateData, a list with four components: hy, an n x d matrix with the true (=simulated) calibrated, transformed data; y, an n x d matrix with the simulated uncalibrated raw data - this is intended to be fed into vsn; is.de, a logical vector of length n, specifying which probes are simulated to be differentially expressed. strata, a factor of length n.For sagmbSimulateData, a number: the root mean squared difference between true and estimated transformed data.

Details

Please see the vignette.

References

Wolfgang Huber, Anja von Heydebreck, Holger Sueltmann, Annemarie Poustka, and Martin Vingron (2003) "Parameter estimation for the calibration and variance stabilization of microarray data", Statistical Applications in Genetics and Molecular Biology: Vol. 2: No. 1, Article 3. http://www.bepress.com/sagmb/vol2/iss1/art3

See Also

vsn

Examples

Run this code
  sim <- sagmbSimulateData(nrstrata=4)
  ny  <- vsn(sim$y, strata=sim$strata)
  res <- sagmbAssess(exprs(ny), sim)
  res

Run the code above in your browser using DataLab