Learn R Programming

wSVM (version 0.1-7)

wsvm.predict: Predict new test set using wsvm function and compute error rate

Description

Predict a weighted svm fit and compute error rate.

Usage

wsvm.predict(X, Y, new.X, new.Y, model, comp.error.rate = FALSE)

Arguments

X
input variable matrix to generate kernel. Data type must be a matrix format.
Y
output variable vector which will be declared as a matrix in SVM. Data type must be a matrix format.
new.X
test predictors.
new.Y
test response.
model
predicted model including alpha and bias terms. The alpha means estimated coefficients(nrow(X) by 1) and bias means bias term.
comp.error.rate
logical value. If true, calculate error rate.

Value

  • A function wsvm.predict generates a list consists of values, g, and error.rate.
  • predicted.valuesfitted value at new.X
  • gsigns of predicted values
  • error.ratemisclassification error rate

Details

Predict a weighted svm fit.

See Also

wsvm, wsvm.boost

Examples

Run this code
# generate a simulation data set using mixture example(page 17, Friedman et al. 2000)

svm.data <- simul.wsvm(set.seeds = 123)
X <- svm.data$X
Y <- svm.data$Y
new.X <- svm.data$new.X
new.Y <- svm.data$new.Y

# run Weighted K-means clustering SVM with boosting algorithm
model <- wsvm(X, Y, c.n = rep(1/ length(Y),length(Y)))

# predict the model and compute an error rate. 
pred <- wsvm.predict(X,Y, new.X, new.Y, model)

Error.rate(pred$predicted.Y, Y)

# add boost algorithm

boo <- wsvm.boost(X, Y, new.X, new.Y, c.n = rep(1/ length(Y),length(Y)), 
    B = 50, kernel.type = list(type = "rbf", par= 0.5), C = 4, 
    eps = 1e-10, plotting = TRUE)
boo

Run the code above in your browser using DataLab