Learn R Programming

waveslim (version 1.8.3)

spin.covariance: Compute Wavelet Cross-Covariance Between Two Time Series

Description

Computes wavelet cross-covariance or cross-correlation between two time series.

Usage

spin.covariance(x, y, lag.max = NA)
spin.correlation(x, y, lag.max = NA)

Value

List structure holding the wavelet cross-covariances (correlations) according to scale.

Arguments

x

first time series

y

second time series, same length as x

lag.max

maximum lag to compute cross-covariance (correlation)

Author

B. Whitcher

Details

See references.

References

Gencay, R., F. Selcuk and B. Whitcher (2001) An Introduction to Wavelets and Other Filtering Methods in Finance and Economics, Academic Press.

Whitcher, B., P. Guttorp and D. B. Percival (2000) Wavelet analysis of covariance with application to atmospheric time series, Journal of Geophysical Research, 105, No. D11, 14,941-14,962.

See Also

wave.covariance, wave.correlation.

Examples

Run this code
## Figure 7.9 from Gencay, Selcuk and Whitcher (2001)
data(exchange)
returns <- diff(log(exchange))
returns <- ts(returns, start=1970, freq=12)
wf <- "d4"
demusd.modwt <- modwt(returns[,"DEM.USD"], wf, 8)
demusd.modwt.bw <- brick.wall(demusd.modwt, wf)
jpyusd.modwt <- modwt(returns[,"JPY.USD"], wf, 8)
jpyusd.modwt.bw <- brick.wall(jpyusd.modwt, wf)
n <- dim(returns)[1]
J <- 6
lmax <- 36
returns.cross.cor <- NULL
for(i in 1:J) {
  blah <- spin.correlation(demusd.modwt.bw[[i]], jpyusd.modwt.bw[[i]], lmax)
  returns.cross.cor <- cbind(returns.cross.cor, blah)
}
returns.cross.cor <- ts(as.matrix(returns.cross.cor), start=-36, freq=1)
dimnames(returns.cross.cor) <- list(NULL, paste("Level", 1:J))
lags <- length(-lmax:lmax)
lower.ci <- tanh(atanh(returns.cross.cor) - qnorm(0.975) /
                 sqrt(matrix(trunc(n/2^(1:J)), nrow=lags, ncol=J, byrow=TRUE)
                      - 3))
upper.ci <- tanh(atanh(returns.cross.cor) + qnorm(0.975) /
                 sqrt(matrix(trunc(n/2^(1:J)), nrow=lags, ncol=J, byrow=TRUE)
                      - 3))
par(mfrow=c(3,2), las=1, pty="m", mar=c(5,4,4,2)+.1)
for(i in J:1) {
  plot(returns.cross.cor[,i], ylim=c(-1,1), xaxt="n", xlab="Lag (months)",
       ylab="", main=dimnames(returns.cross.cor)[[2]][i])
  axis(side=1, at=seq(-36, 36, by=12))
  lines(lower.ci[,i], lty=1, col=2)
  lines(upper.ci[,i], lty=1, col=2)
  abline(h=0,v=0)
}

Run the code above in your browser using DataLab