This function thresholds or shrinks wavelet coefficients stored in a wp
object and returns the coefficients in a modified wp
object. See the seminal papers by Donoho and Johnstone for explanations about thresholding. For a gentle introduction to wavelet thresholding (or shrinkage as it is sometimes called) see Nason and Silverman, 1994. For more details on each technique see the descriptions of each method below
The basic idea of thresholding is very simple. In a signal plus noise model the wavelet transform of signal is very sparse, the wavelet transform of noise is not (in particular, if the noise is iid Gaussian then so if the noise contained in the wavelet coefficients). Thus since the signal gets concentrated in the wavelet coefficients and the noise remains "spread" out it is "easy" to separate the signal from noise by keeping large coefficients (which correspond to signal) and delete the small ones (which correspond to noise). However, one has to have some idea of the noise level (computed using the dev option in threshold functions). If the noise level is very large then it is possible, as usual, that no signal "sticks up" above the noise.
There are many components to a successful thresholding procedure. Some components have a larger effect than others but the effect is not the same in all practical data situations. Here we give some rough practical guidance, although you must refer to the papers below when using a particular technique. You cannot expect to get excellent performance on all signals unless you fully understand the rationale and limitations of each method below. I am not in favour of the "black-box" approach. The thresholding functions of WaveThresh3 are not a black box: experience and judgement are required!
Some issues to watch for:
- levels
The default of levels = 3:(wd$nlevelsWT - 1)
for the levels
option most certainly does not work globally for all data problems and situations. The level at which thresholding begins (i.e. the given threshold and finer scale wavelets) is called the primary resolution and is unique to a particular problem. In some ways choice of the primary resolution is very similar to choosing the bandwidth in kernel regression albeit on a logarithmic scale. See Hall and Patil, (1995) and Hall and Nason (1997) for more information. For each data problem you need to work out which is the best primary resolution. This can be done by gaining experience at what works best, or using prior knowledge. It is possible to "automatically" choose a "best" primary resolution using cross-validation (but not in WaveThresh).
Secondly the levels argument computes and applies the threshold at the levels specified in the levels
argument. It does this for all the levels specified. Sometimes, in wavelet shrinkage, the threshold is computed using only the finest scale coefficients (or more precisely the estimate of the overall noise level). If you want your threshold variance estimate only to use the finest scale coefficients (e.g. with universal thresholding) then you will have to apply the threshold.wp
function twice. Once (with levels set equal to nlevelsWT
(wd)-1 and with return.threshold=TRUE
to return the threshold computed on the finest scale and then apply the threshold function with the manual option supplying the value of the previously computed threshold as the value options.
- by.level
for a wd
object which has come from data with noise that is correlated then you should have a threshold computed for each resolution level. See the paper by Johnstone and Silverman, 1997.