Learn R Programming

weibullness (version 1.23.8)

weibull.ic: Maximum likelihood estimates with Interval Censoring

Description

Calculates the maximum likelihood estimates with Interval Censoring Using the EM Algorithm.

Usage

weibull.ic(X, start=c(1,1), maxits=10000, eps=1E-5)

Value

Calculates the maximum likelihood estimates with interval-censored data

Arguments

X

a numeric matrix (n x 2) of observations.

start

a starting value.

maxits

the maximum number of iterations.

eps

the desired accuracy (convergence tolerance).

Author

Chanseok Park

Details

The expectation-maximization(EM) algorithm is used for estimating the parameters with interval-censored data.

References

Park, C. (2023). A Note on Weibull Parameter Estimation with Interval Censoring Using the EM Algorithm. Mathematics, 11(14), 3156.
tools:::Rd_expr_doi("10.3390/math11143156")

Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data, 2nd ed.; John Wiley & Sons: New York, NY.

See Also

weibull.wp for the parameter estimation using the Weibull plot with full observations. weibull.mle for the parameter estimation using the maximum likelihood method with full observations.

Examples

Run this code
library(weibullness)

attach(Wdata)
weibull.ic(radio.chemotherapy)

# Two-parameter Weibull with full observations
weibull.ic( cbind(bearings,bearings) )

# Two-parameter Weibull with full observations (using weibull.mle)
weibull.mle(bearings, threshold=0)

Run the code above in your browser using DataLab