# NOT RUN {
# Example 1: Beta-Binomial Confidence Bounds for two-parameter Weibull:
obs <- seq(10000, 100000, 10000)
state <- c(0, 1, 1, 0, 0, 0, 1, 0, 1, 0)
df_john <- johnson_method(x = obs, event = state)
mrr <- rank_regression(x = df_john$characteristic,
y = df_john$prob,
event = df_john$status,
distribution = "weibull",
conf_level = .95)
conf_betabin <- confint_betabinom(x = df_john$characteristic,
event = df_john$status,
loc_sc_params = mrr$loc_sc_coefficients,
distribution = "weibull",
bounds = "two_sided",
conf_level = 0.95,
direction = "y")
# Example 2: Beta-Binomial Confidence Bounds for three-parameter Weibull:
# Alloy T7987 dataset taken from Meeker and Escobar(1998, p. 131)
cycles <- c(300, 300, 300, 300, 300, 291, 274, 271, 269, 257, 256, 227, 226,
224, 213, 211, 205, 203, 197, 196, 190, 189, 188, 187, 184, 180,
180, 177, 176, 173, 172, 171, 170, 170, 169, 168, 168, 162, 159,
159, 159, 159, 152, 152, 149, 149, 144, 143, 141, 141, 140, 139,
139, 136, 135, 133, 131, 129, 123, 121, 121, 118, 117, 117, 114,
112, 108, 104, 99, 99, 96, 94)
state <- c(rep(0, 5), rep(1, 67))
df_john2 <- johnson_method(x = cycles, event = state)
mrr_weib3 <- rank_regression(x = df_john2$characteristic,
y = df_john2$prob,
event = df_john2$status,
distribution = "weibull3",
conf_level = .95)
conf_betabin_weib3 <- confint_betabinom(x = df_john2$characteristic,
event = df_john2$status,
loc_sc_params = mrr_weib3$loc_sc_coefficients,
distribution = "weibull3",
bounds = "two_sided",
conf_level = 0.95,
direction = "y")
# }
Run the code above in your browser using DataLab